Suppr超能文献

匹配行为作为奖励最大化与神经计算需求之间的权衡

Matching Behavior as a Tradeoff Between Reward Maximization and Demands on Neural Computation.

作者信息

Kubanek Jan, Snyder Lawrence H

机构信息

Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, 63110, USA ; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.

出版信息

F1000Res. 2015 Jun 9;4:147. doi: 10.12688/f1000research.6574.2. eCollection 2015.

Abstract

When faced with a choice, humans and animals commonly distribute their behavior in proportion to the frequency of payoff of each option. Such behavior is referred to as matching and has been captured by the matching law. However, matching is not a general law of economic choice. Matching in its strict sense seems to be specifically observed in tasks whose properties make matching an optimal or a near-optimal strategy. We engaged monkeys in a foraging task in which matching was not the optimal strategy. Over-matching the proportions of the mean offered reward magnitudes would yield more reward than matching, yet, surprisingly, the animals almost exactly matched them. To gain insight into this phenomenon, we modeled the animals' decision-making using a mechanistic model. The model accounted for the animals' macroscopic and microscopic choice behavior. When the models' three parameters were not constrained to mimic the monkeys' behavior, the model over-matched the reward proportions and in doing so, harvested substantially more reward than the monkeys. This optimized model revealed a marked bottleneck in the monkeys' choice function that compares the value of the two options. The model featured a very steep value comparison function relative to that of the monkeys. The steepness of the value comparison function had a profound effect on the earned reward and on the level of matching. We implemented this value comparison function through responses of simulated biological neurons. We found that due to the presence of neural noise, steepening the value comparison requires an exponential increase in the number of value-coding neurons. Matching may be a compromise between harvesting satisfactory reward and the high demands placed by neural noise on optimal neural computation.

摘要

当面临选择时,人类和动物通常会根据每个选项的回报频率按比例分配其行为。这种行为被称为匹配,并已被匹配定律所描述。然而,匹配并非经济选择的普遍规律。严格意义上的匹配似乎特别出现在那些其属性使匹配成为最优或接近最优策略的任务中。我们让猴子参与了一项觅食任务,在该任务中匹配并非最优策略。过度匹配平均提供的奖励幅度比例会比匹配获得更多奖励,然而,令人惊讶的是,动物们几乎完全与之匹配。为了深入了解这一现象,我们使用一个机械模型对动物的决策进行了建模。该模型解释了动物的宏观和微观选择行为。当模型的三个参数不被约束以模仿猴子的行为时,该模型过度匹配了奖励比例,并且这样做收获的奖励比猴子多得多。这个优化后的模型揭示了猴子在比较两个选项价值的选择函数中存在明显的瓶颈。该模型的价值比较函数相对于猴子的非常陡峭。价值比较函数的陡峭程度对获得的奖励和匹配程度有深远影响。我们通过模拟生物神经元的反应实现了这个价值比较函数。我们发现,由于神经噪声的存在,使价值比较变陡峭需要价值编码神经元数量呈指数级增加。匹配可能是在收获满意奖励与神经噪声对最优神经计算提出的高要求之间的一种折衷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b8b/4654448/5011f38570eb/f1000research-4-7688-g0000.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验