Dayan Michael, Monohan Elizabeth, Pandya Sneha, Kuceyeski Amy, Nguyen Thanh D, Raj Ashish, Gauthier Susan A
Weill Cornell Medicine, Deparment of Radiology, New York, NY.
Weill Cornell Medicine, Deparment of Neurology, New York, NY.
Hum Brain Mapp. 2016 Mar;37(3):989-1004. doi: 10.1002/hbm.23082. Epub 2015 Dec 15.
describe a new "profilometry" framework for the multimetric analysis of white matter tracts, and demonstrate its application to multiple sclerosis (MS) with radial diffusivity (RD) and myelin water fraction (MWF).
A cohort of 15 normal controls (NC) and 141 MS patients were imaged with T1, T2 FLAIR, T2 relaxometry and diffusion MRI (dMRI) sequences. T1 and T2 FLAIR allowed for the identification of patients having lesion(s) on the tracts studied, with a special focus on the forceps minor. T2 relaxometry provided MWF maps, while dMRI data yielded RD maps and the tractography required to compute MWF and RD tract profiles. The statistical framework combined a multivariate analysis of covariance (MANCOVA) and a linear discriminant analysis (LDA) both accounting for age and gender, with multiple comparison corrections.
In the single-case case study the profilometry visualization showed a clear departure of MWF and RD from the NC normative data at the lesion location(s). Group comparison from MANCOVA demonstrated significant differences at lesion locations, and a significant age effect in several tracts. The follow-up LDA analysis suggested MWF better discriminates groups than RD.
While progress has been made in both tract-profiling and metrics for white matter characterization, no single framework for a joint analysis of multimodality tract profiles accounting for age and gender is known to exist. The profilometry analysis and visualization appears to be a promising method to compare groups using a single score from MANCOVA while assessing the contribution of each metric with LDA.
描述一种用于白质束多指标分析的新型“轮廓测定法”框架,并展示其在多发性硬化症(MS)中对径向扩散率(RD)和髓磷脂水分数(MWF)的应用。
对15名正常对照(NC)和141名MS患者进行T1、T2 FLAIR、T2弛豫测量和扩散磁共振成像(dMRI)序列成像。T1和T2 FLAIR用于识别所研究束上有病变的患者,特别关注小钳。T2弛豫测量提供MWF图,而dMRI数据产生RD图以及计算MWF和RD束轮廓所需的纤维束成像。统计框架结合了多变量协方差分析(MANCOVA)和线性判别分析(LDA),两者均考虑年龄和性别,并进行多重比较校正。
在单病例研究中,轮廓测定法可视化显示病变部位的MWF和RD明显偏离NC标准数据。MANCOVA的组间比较显示病变部位存在显著差异,并且在几条束中存在显著的年龄效应。后续的LDA分析表明,MWF比RD能更好地区分组别。
虽然在束轮廓分析和白质特征指标方面都取得了进展,但目前尚不存在一个联合分析多模态束轮廓并考虑年龄和性别的单一框架。轮廓测定法分析和可视化似乎是一种很有前景的方法,可使用MANCOVA的单一分数比较组,同时用LDA评估每个指标的贡献。