Hernandez-Gutierrez Erick, Coronado-Leija Ricardo, Edde Manon, Dumont Matthieu, Houde Jean-Christophe, Barakovic Muhamed, Magon Stefano, Ramirez-Manzanares Alonso, Descoteaux Maxime
Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada.
Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine (NYU), New York, NY, United States.
Front Neurosci. 2024 Dec 20;18:1467786. doi: 10.3389/fnins.2024.1467786. eCollection 2024.
Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics. These multi-tensors are estimated using the stable, accurate and robust to noise Multi-Resolution Discrete Search method (MRDS). The spatial coherence of the multi-tensor field estimated with MRDS, which includes up to three anisotropic and one isotropic tensors, is tractography-regularized using the Track Orientation Density Imaging method. Our end-to-end tractometry pipeline goes from raw data to track-specific multi-tensor-metrics tract profiles that are robust to noise and crossing fibers. A comprehensive evaluation conducted in a phantom simulating healthy and damaged tissue with the standard model, as well as in a healthy cohort of 20 individuals scanned along 5 time points, demonstrates the advantages of using multi-tensor metrics over traditional single-tensor metrics in tractometry. Qualitative assessment in a cohort of patients with relapsing-remitting multiple sclerosis reveals that the pipeline effectively detects white matter anomalies in the presence of crossing fibers and lesions.
传统的扩散张量成像(DTI)指标会受到交叉纤维和病变的影响。以前的大多数纤维束测量工作都使用单一扩散张量,这导致在交叉纤维区域的敏感性有限且结果解释具有挑战性。在这项工作中,我们提出了一种纤维束测量流程,该流程将白质纤维束成像与基于多张量固定体素的指标相结合。这些多张量是使用稳定、准确且对噪声鲁棒的多分辨率离散搜索方法(MRDS)估计的。用MRDS估计的多张量场的空间相干性,其中包括多达三个各向异性张量和一个各向同性张量,使用轨迹方向密度成像方法进行纤维束成像正则化。我们的端到端纤维束测量流程从原始数据生成对噪声和交叉纤维具有鲁棒性的特定轨迹多张量指标轨迹剖面。在使用标准模型模拟健康和受损组织的体模中,以及在对20名个体进行5个时间点扫描的健康队列中进行的综合评估表明,在纤维束测量中使用多张量指标优于传统的单张量指标。对复发缓解型多发性硬化症患者队列的定性评估表明,该流程在存在交叉纤维和病变的情况下能有效检测白质异常。