迈向腹腔镜视频的实时远程处理。
Toward real-time remote processing of laparoscopic video.
作者信息
Ronaghi Zahra, Duffy Edward B, Kwartowitz David M
机构信息
Clemson University , Department of Bioengineering, 301 Rhodes Research Center, Clemson, South Carolina, 29634-0905, United States.
Clemson University , Clemson Computing and Information Technology, Barre Hall, 120 McGinty Court, Clemson, South Carolina 29634, United States.
出版信息
J Med Imaging (Bellingham). 2015 Oct;2(4):045002. doi: 10.1117/1.JMI.2.4.045002. Epub 2015 Dec 14.
Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and use small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery uses the images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, California). The video streams generate approximately 360 MB of data per second, demonstrating a trend toward increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process, and visualize data in real time is essential for the performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We have performed image processing algorithms on a high-definition head phantom video (1920 × 1080 pixels) and transferred the video using a message passing interface. The total transfer time is around 53 ms or 19 fps. We will optimize and parallelize these algorithms to reduce the total time to 30 ms.
腹腔镜手术是一种微创手术技术,外科医生将一个小型摄像机插入患者体内以观察内部器官,并使用小型工具进行手术操作。然而,小切口的好处存在一个缺点,即对皮下组织的可视化有限,这可能导致在进行治疗时出现导航挑战。图像引导手术利用图像来绘制皮下结构,并且可以减少腹腔镜手术的局限性。一种特别值得关注的腹腔镜摄像系统是达芬奇Si机器人手术系统(直观外科公司,加利福尼亚州桑尼维尔)的视觉系统。视频流每秒产生约360MB的数据,这表明医学数据量有增加的趋势,主要是由于更高分辨率的摄像机和成像设备。在床边个人电脑上处理这些数据变得具有挑战性,并且在护理点可能并不总是能获得高性能计算(HPC)环境。要以每秒30帧(fps)的典型速率在远程HPC集群上处理此数据,要求每个11.9MB的视频帧由一台服务器处理并在1/30秒内返回。实时获取、处理和可视化数据的能力对于执行复杂任务以及将患者风险降至最低至关重要。因此,利用高速网络访问计算集群将实现实时医学图像处理,并通过提供实时增强腹腔镜数据来改善手术体验。我们已经在一个高清头部模型视频(1920×1080像素)上执行了图像处理算法,并使用消息传递接口传输了该视频。总传输时间约为53毫秒或19帧每秒。我们将优化这些算法并使其并行化,以将总时间减少到30毫秒。