Suppr超能文献

具有碳/聚合物电解质复合材料三维叉指电极的高能量密度全固态微型超级电容器。

High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite.

作者信息

Pu Juan, Wang Xiaohong, Zhang Tianyi, Li Siwei, Liu Jinghe, Komvopoulos Kyriakos

机构信息

Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, People's Republic of China. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.

出版信息

Nanotechnology. 2016 Jan 29;27(4):045701. doi: 10.1088/0957-4484/27/4/045701. Epub 2015 Dec 16.

Abstract

Novel all-solid-state microsupercapacitors (MSCs) with three-dimensional (3D) electrodes consisting of active materials (i.e., graphene or activated carbon (AC) particles) and polymer electrolyte (PE) designed for high-energy-density storage applications were fabricated and tested in this work. The incorporation of PE in the electrode material enhances the accessibility of electrolyte ions to the surface of active materials and decreases the ion diffusion path during electrochemical charge/discharge. For a scan rate of 5 mV s(-1), the MSCs with graphene/PE and AC/PE composite electrodes demonstrate a very high areal capacitance of 95 and 134 mF cm(-2), respectively, comparable to that of 3D MSCs with liquid electrolyte. In addition, the graphene/PE MSCs show a ∼70% increase in specific capacitance after 10 000 charge/discharge cycles, attributed to an electro-activation process resulting from ion intercalation between the graphene nanosheets. The AC/PE MSCs also demonstrate excellent stability. The results of this study illustrate the potential of the present 3D MSCs for various high-density solid-state energy storage applications.

摘要

本文制备并测试了新型全固态微型超级电容器(MSC),其具有由活性材料(即石墨烯或活性炭(AC)颗粒)和聚合物电解质(PE)组成的三维(3D)电极,专为高能量密度存储应用而设计。在电极材料中加入PE可提高电解质离子对活性材料表面的可及性,并缩短电化学充/放电过程中的离子扩散路径。对于5 mV s(-1)的扫描速率,具有石墨烯/PE和AC/PE复合电极的MSC分别表现出95和134 mF cm(-2)的非常高的面积电容,与具有液体电解质的3D MSC相当。此外,石墨烯/PE MSC在10000次充/放电循环后比电容增加约70%,这归因于石墨烯纳米片之间离子嵌入导致的电激活过程。AC/PE MSC也表现出优异的稳定性。本研究结果说明了当前3D MSC在各种高密度固态储能应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验