Bernsdorff Friederike, Döring Anne-Christin, Gruner Katrin, Schuck Stefan, Bräutigam Andrea, Zeier Jürgen
Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.
Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany.
Plant Cell. 2016 Jan;28(1):102-29. doi: 10.1105/tpc.15.00496. Epub 2015 Dec 15.
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
我们研究了两种免疫调节植物代谢产物水杨酸(SA)和哌啶酸(Pip)在植物系统获得性抗性(SAR)、SAR相关防御引发和基础免疫建立过程中的关系。利用SA缺陷型sid2、Pip缺陷型ald1以及SA和Pip均缺陷的sid2 ald1植物,我们发现SA和Pip在拟南芥对丁香假单胞菌的基础免疫中既相互独立又协同发挥作用。转录组分析表明,拟南芥中SAR的建立具有以下特征:在叶片中系统性诱导产生强烈的转录反应,通过预激活防御信号的多个阶段使植物为未来的病原体攻击做好准备;并且在SAR激活后SA的积累会导致植物体内光合作用下调以及茉莉酸反应在系统水平上减弱。虽然系统性Pip升高对于SAR是不可或缺的,并且对于几乎整个转录性SAR反应都是必需的,但我们也揭示了SAR激活和SAR基因表达中存在一个适度但显著的不依赖SA的成分。在SAR过程中,Pip以黄素依赖性单加氧酶1(FMO1)依赖的方式协调病原体反应的SA依赖性和SA非依赖性引发。我们得出结论,Pip/FMO1信号模块是激活SAR及相关防御引发事件的不可或缺的开关,并且SA在SAR激活植物的远端组织中不同程度地放大了Pip触发的反应。