Suppr超能文献

多因素模型中的一种类固醇代谢基因变异可改善高发病率乳腺癌人群的风险预测。

A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population.

作者信息

Jupe Eldon R, Dalessandri Kathie M, Mulvihill John J, Miike Rei, Knowlton Nicholas S, Pugh Thomas W, Zhao Lue Ping, DeFreese Daniele C, Manjeshwar Sharmila, Gramling Bobby A, Wiencke John K, Benz Christopher C

机构信息

Research and Development, InterGenetics Incorporated, Oklahoma City, OK, USA.

Surgeon-Scientist, Point Reyes Station, CA, USA.

出版信息

BBA Clin. 2014 Nov 8;2:94-102. doi: 10.1016/j.bbacli.2014.11.001. eCollection 2014 Dec.

Abstract

BACKGROUND

We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population.

METHODS

A polyfactorial risk model (PFRM) was built from both clinical data and functional single nucleotide polymorphism (SNP) gene candidates using multivariate logistic regression analysis on data from 5022 US Caucasian females (1671 breast cancer cases, 3351 controls), validated in an independent set of 1193 women (400 cases, 793 controls), and reassessed in a unique high incidence breast cancer population (165 cases, 173 controls) from Marin County, CA.

RESULTS

The optimized PFRM consisted of 22 SNPs (19 genes, 6 regulating steroid metabolism) and 5 clinical risk factors, and its 5-year and lifetime risk prediction performance proved significantly superior (~ 2-fold) over the Gail model (Breast Cancer Risk Assessment Tool, BCRAT), whether assessed by odds (OR) or positive likelihood (PLR) ratios over increasing model risk levels. Improved performance of the PFRM in high risk Marin women was due in part to genotype enrichment by a CYP11B2 (-344T/C) variant.

CONCLUSIONS AND GENERAL SIGNIFICANCE

Since the optimized PFRM consistently outperformed BCRAT in all Caucasian study populations, it represents an improved personalized risk assessment tool. The finding of higher Marin County risk linked to a CYP11B2 aldosterone synthase SNP associated with essential hypertension offers a new genetic clue to sporadic breast cancer predisposition.

摘要

背景

我们将功能基因多态性与临床因素相结合,以改善对散发性乳腺癌风险的预测和理解,特别是在高发病率的白种人群体中。

方法

使用多变量逻辑回归分析,基于5022名美国白种女性(1671例乳腺癌病例,3351例对照)的数据构建了一个多因素风险模型(PFRM),该模型纳入了临床数据和功能性单核苷酸多态性(SNP)基因候选物,并在一组1193名女性(400例病例,793例对照)的独立样本中进行了验证,随后在加利福尼亚州马林县的一个独特的高发病率乳腺癌人群(165例病例,173例对照)中进行了重新评估。

结果

优化后的PFRM由22个SNP(19个基因,6个调节类固醇代谢)和5个临床风险因素组成,无论通过比值比(OR)还是阳性似然比(PLR)来评估随模型风险水平增加的情况,其5年和终生风险预测性能均显著优于盖尔模型(乳腺癌风险评估工具,BCRAT)约2倍。PFRM在高风险的马林女性中表现更优,部分原因是CYP11B2(-344T/C)变体导致的基因型富集。

结论及一般意义

由于优化后的PFRM在所有白种人研究人群中始终优于BCRAT,它代表了一种改进的个性化风险评估工具。与原发性高血压相关的CYP11B2醛固酮合酶SNP与马林县较高的乳腺癌风险相关,这一发现为散发性乳腺癌易感性提供了新的遗传线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6100/4633888/dd9583aaa9b9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验