Melke Julia, Peter Benedikt, Habereder Anja, Ziegler Juergen, Fasel Claudia, Nefedov Alexei, Sezen Hikmet, Wöll Christof, Ehrenberg Helmut, Roth Christina
Institut für Angewandte Materialien-Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Physikalische und Theoretische Chemie, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany.
ACS Appl Mater Interfaces. 2016 Jan 13;8(1):82-90. doi: 10.1021/acsami.5b06225. Epub 2016 Jan 4.
N-doped carbon materials are discussed as catalyst supports for the electrochemical oxygen reduction reaction (ORR) in fuel cells. This work deals with the preparation of Pt nanoparticles (NPs) supported on N-doped carbon nanofibers (N-CNF) from a polyaniline nanofiber (PANI NF) precursor, and investigates the ORR activity of the produced materials. Initially, Pt NPs are deposited on PANI NFs. The PANI NF precursors are characterized by near-edge X-ray absorption fine structure (NEXAFS) and transmission electron microscopy (TEM) measurements. It is shown, that in the PANI NF precursor materials electrons from the Pt are being transferred toward the π-conjugated systems of the aromatic ring. This strong interaction of Pt atoms with PANI explains the high dispersion of Pt NPs on the PANI NF. Subsequently, the PANI NF precursors are carbonized at different heat-treatment conditions resulting in structurally different N-CNFs which are characterized by NEXAFS, X-ray photoelectron spectroscopy (XPS) ,and TEM measurements. It is shown that an interaction between N-groups and Pt NPs exists in all investigated N-CNFs. However, the N-CNFs differ in the composition of the N-species and the dispersion of the Pt NPs. A small mean Pt NP size with a narrow size distribution is attributed to the presence of pyrdinic N-groups in the N-CNFs, whereas, for the N-CNFs with mainly graphitic and pyrrolic N-groups, an increase in the average Pt NP size with a broad size distribution is found. The ORR activity in alkaline media investigated by Koutecky-Levich analysis of rotating disk electrode measurements showed a largely enhanced ORR activity in comparison to a conventional Pt/C catalyst.
氮掺杂碳材料被作为燃料电池中电化学氧还原反应(ORR)的催化剂载体进行讨论。这项工作涉及从聚苯胺纳米纤维(PANI NF)前驱体制备负载在氮掺杂碳纳米纤维(N-CNF)上的铂纳米颗粒(NPs),并研究所制备材料的ORR活性。首先,将铂纳米颗粒沉积在聚苯胺纳米纤维上。通过近边X射线吸收精细结构(NEXAFS)和透射电子显微镜(TEM)测量对聚苯胺纳米纤维前驱体进行表征。结果表明,在聚苯胺纳米纤维前驱体材料中,来自铂的电子正朝着芳环的π共轭体系转移。铂原子与聚苯胺的这种强相互作用解释了铂纳米颗粒在聚苯胺纳米纤维上的高分散性。随后,在不同的热处理条件下将聚苯胺纳米纤维前驱体碳化,得到结构不同的氮掺杂碳纳米纤维,通过NEXAFS、X射线光电子能谱(XPS)和TEM测量对其进行表征。结果表明,在所有研究的氮掺杂碳纳米纤维中,氮基团与铂纳米颗粒之间存在相互作用。然而,氮掺杂碳纳米纤维在氮物种的组成和铂纳米颗粒的分散性方面存在差异。氮掺杂碳纳米纤维中吡啶型氮基团的存在导致铂纳米颗粒的平均尺寸小且尺寸分布窄,而对于主要含有石墨型和吡咯型氮基团的氮掺杂碳纳米纤维,发现铂纳米颗粒的平均尺寸增加且尺寸分布宽。通过旋转圆盘电极测量的Koutecky-Levich分析研究的碱性介质中的ORR活性表明,与传统的Pt/C催化剂相比,ORR活性有很大提高。