Row Richard H, Tsotras Steve R, Goto Hana, Martin Benjamin L
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
Development. 2016 Jan 15;143(2):244-54. doi: 10.1242/dev.129015. Epub 2015 Dec 16.
Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions.
脊椎动物身体轴的形成依赖于尾芽后壁的一群双能神经中胚层细胞,这些细胞在原肠胚形成后做出胚层决定,以形成脊髓和中胚层。尽管这些细胞表现出胚层可塑性,但它们从未产生脊索、底板和背侧内胚层的中线组织,这就提出了一个问题,即中线组织是否也在原肠胚形成后由基部后部祖细胞产生。我们在斑马鱼中发现,局部后部信号在两个基部尾芽中线祖细胞群体中指定胚层命运。Wnt信号通过对sox2的负转录调控在脊索/底板双能细胞群体中诱导脊索形成。原肠胚形成期间诱导下脊索所需的Notch信号在尾芽中继续起作用,从脊索/下脊索双能细胞群体中指定下脊索。我们的结果为斑马鱼中线组织形成的连续分配模型提供了有力支持,并为斑马鱼和小鼠的分叉脊索表型以及罕见的人类先天性分裂脊索综合征提供了胚胎学基础。我们证明了尾芽祖细胞群体之间的发育等效性。原肠胚形成后,通过异位表达msgn1(一种体节中胚层命运的主要调节因子),或者如果移植到通常产生体节的双能祖细胞中,中线祖细胞可以从脊索转分化为体节命运。我们的结果表明,整个非表皮后部身体源自离散的基部尾芽细胞群体。这些细胞在原肠胚形成后仍然对细胞外信号有反应,并继续做出基本的胚层决定。