Chinese Geological Survey, Nanjing Center, Nanjing, China.
Department of Geology, Juniata College, Huntingdon, PA, USA.
Sci Total Environ. 2016 Feb 15;544:677-85. doi: 10.1016/j.scitotenv.2015.11.101. Epub 2015 Dec 10.
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems.
过渡金属同位素特征正成为鉴定地表水来源的有用工具。本研究探索了利用 Cu 同位素值来追踪德兴矿(亚洲最大的斑岩型 Cu 矿区)矿副产品影响的流域中溪流水中溶解金属污染物的方法。溪流水中的 Cu 同位素值与矿区内潜在的 Cu 矿物源以及与已知 Cu 源的接近程度进行了比较。第一个矿物源为黄铜矿(CuFeS2),其 Cu 同位素值具有一个紧密的集群(-0.15‰至+1.65‰;+0.37±0.6‰,1σ,n=10),第二个矿物源为黄铁矿(FeS2),其 Cu 同位素值范围较大(-4‰至+11.9‰;2.7±4.3‰,1σ,n=16)。溪流水中溶解的 Cu 同位素值表明金属源自黄铜矿或黄铁矿。在已知的 Cu 矿化上方,溪流水的 Cu 同位素值比黄铜矿的平均值高约+1.5‰,被解释为来自黄铜矿的风化。相比之下,源自尾矿堆的溪流水中溶解的 Cu 同位素值与黄铁矿相似或更高(>+6‰,尾矿中常见的矿物)。这些值被解释为源自尾矿,即使在 Cu 浓度显著较低的溶液中(<0.05 ppm)也是如此。在两个土壤和两个尾矿样品中也发现了较高的 Cu 同位素值(δ65Cu 介于+2 至+5‰之间)。这些数据表明,尾矿中的黄铁矿是高 Cu 同位素值的矿物源。因此,源自明显污染排水的水具有不同的 Cu 同位素值,允许区分溶液中源自黄铜矿和黄铁矿的 Cu。这些数据表明 Cu 同位素值在水、矿物和土壤中可用于鉴定环境问题中的金属污染。