Suppr超能文献

工程化银纳米颗粒在质膜上被感知,并显著改变拟南芥植物的生理状态。

Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.

作者信息

Sosan Arifa, Svistunenko Dimitri, Straltsova Darya, Tsiurkina Katsiaryna, Smolich Igor, Lawson Tracy, Subramaniam Sunitha, Golovko Vladimir, Anderson David, Sokolik Anatoliy, Colbeck Ian, Demidchik Vadim

机构信息

School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.

Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus.

出版信息

Plant J. 2016 Jan;85(2):245-57. doi: 10.1111/tpj.13105.

Abstract

Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate.

摘要

银纳米颗粒(Ag NPs)是世界上最重要的纳米材料和纳米毒物。本研究的目的是确定Ag NPs与植物细胞相互作用的早期阶段,并研究它们的生理作用。我们已经表明,在培养基中添加浓度高于300 mg L(-1) 的Ag NPs会抑制拟南芥根的伸长和叶片扩展。这也导致光合效率降低以及组织中Ag的极度积累。急性施加Ag NPs会导致细胞质中[Ca(2+)]瞬时升高以及活性氧(ROS;部分由NADPH氧化酶产生)的积累。对根细胞原生质体进行的全细胞膜片钳测量表明,Ag NPs会轻微抑制质膜K(+)外流和Ca(2+)内流电流,或导致膜破裂;然而,在切除的外翻膜片中,Ag NPs会激活电导约为56 pS的Gd(3+)敏感Ca(2+)内流通道。大块颗粒不会改变质膜电流。电子顺磁共振光谱测试表明,Ag NPs不能催化羟基自由基的产生,但它们会直接氧化主要的植物抗氧化剂L-抗坏血酸。总体而言,所呈现的数据揭示了纳米银对植物细胞影响的机制,并表明这些机制包括经典应激信号反应的诱导(由细胞质中[Ca(2+)]和ROS介导)以及对质膜电导和还原型抗坏血酸的特定影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验