Suppr超能文献

在平衡状态下维持蛋白质稳定性的选择。

Selection maintaining protein stability at equilibrium.

作者信息

Miyazawa Sanzo

机构信息

6-5-607 Miyanodai, Sakura, Chiba 285-0857, Japan.

出版信息

J Theor Biol. 2016 Feb 21;391:21-34. doi: 10.1016/j.jtbi.2015.12.001. Epub 2015 Dec 8.

Abstract

The common understanding of protein evolution has been that neutral mutations are fixed by random drift, and a proportion of neutral mutations depending on the strength of structural and functional constraints primarily determines evolutionary rate. Recently it was indicated that fitness costs due to misfolded proteins are a determinant of evolutionary rate and selection originating in protein stability is a driving force of protein evolution. Here we examine protein evolution under the selection maintaining protein stability. Protein fitness is a generic form of fitness costs due to misfolded proteins; s=κexp(ΔG/kT)(1-exp(ΔΔG/kT)), where s and ΔΔG are selective advantage and stability change of a mutant protein, ΔG is the folding free energy of the wildtype protein, and κ is a parameter representing protein abundance and indispensability. The distribution of ΔΔG is approximated to be a bi-Gaussian distribution, which represents structurally slightly- or highly-constrained sites. Also, the mean of the distribution is negatively proportional to ΔG. The evolution of this gene has an equilibrium point (ΔGe) of protein stability, the range of which is consistent with observed values in the ProTherm database. The probability distribution of Ka/Ks, the ratio of nonsynonymous to synonymous substitution rate per site, over fixed mutants in the vicinity of the equilibrium shows that nearly neutral selection is predominant only in low-abundant, non-essential proteins of ΔGe>-2.5 kcal/mol. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutations, although the average 〈Ka/Ks〉 is less than 1. Slow evolutionary rates can be caused by both high protein abundance/indispensability and large effective population size, which produces positive shifts of ΔΔG through decreasing ΔGe, and strong structural constraints, which directly make ΔΔG more positive. Protein abundance/indispensability more affect evolutionary rate for less constrained proteins, and structural constraint for less abundant, less essential proteins. The effect of protein indispensability on evolutionary rate may be hidden by the variation of protein abundance and detected only in low-abundant proteins. Also, protein stability (-ΔGe/kT) and 〈Ka/Ks〉 are predicted to decrease as growth temperature increases.

摘要

关于蛋白质进化的普遍认识是,中性突变通过随机漂变而固定,并且取决于结构和功能限制强度的一定比例的中性突变主要决定了进化速率。最近有研究表明,错误折叠蛋白质导致的适应性成本是进化速率的一个决定因素,源于蛋白质稳定性的选择是蛋白质进化的驱动力。在此,我们研究了在维持蛋白质稳定性的选择作用下的蛋白质进化。蛋白质适应性是错误折叠蛋白质导致的适应性成本的一种通用形式;s = κexp(ΔG/kT)(1 - exp(ΔΔG/kT)),其中s和ΔΔG分别是突变蛋白的选择优势和稳定性变化,ΔG是野生型蛋白的折叠自由能,κ是一个代表蛋白质丰度和不可或缺性的参数。ΔΔG的分布近似为双高斯分布,它代表了结构上轻微或高度受限的位点。此外,该分布的均值与ΔG成反比。这个基因的进化具有蛋白质稳定性的平衡点(ΔGe),其范围与ProTherm数据库中的观测值一致。在平衡点附近固定突变体上,每个位点非同义替换率与同义替换率之比Ka/Ks的概率分布表明,只有在ΔGe > -2.5 kcal/mol的低丰度、非必需蛋白质中,近中性选择才占主导。在其他蛋白质中,对稳定突变的正选择对于在平衡状态下维持蛋白质稳定性很重要,同时对轻微负向突变也存在随机漂变,尽管平均〈Ka/Ks〉小于1。进化速率缓慢可能由高蛋白丰度/不可或缺性和大有效种群大小共同导致,这会通过降低ΔGe使ΔΔG产生正向偏移,也可能由强烈的结构限制导致,结构限制会直接使ΔΔG更正。蛋白质丰度/不可或缺性对结构限制较少的蛋白质的进化速率影响更大,而结构限制对丰度较低、必要性较小的蛋白质影响更大。蛋白质不可或缺性对进化速率的影响可能会被蛋白质丰度的变化所掩盖,并且仅在低丰度蛋白质中才能检测到。此外,预计随着生长温度升高,蛋白质稳定性(-ΔGe/kT)和〈Ka/Ks〉会降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验