Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Cell Rep. 2012 Aug 30;2(2):249-56. doi: 10.1016/j.celrep.2012.06.022. Epub 2012 Aug 2.
The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG), simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the premutation ΔG and the arising mutational effect (ΔΔG), purely biophysical in origin, is a necessary requirement for abundance-evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance-evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.
在所有生命领域中,高度丰富的蛋白质进化缓慢的一致观察表明,细胞丰度是决定蛋白质进化率的关键因素。然而,其他经验发现,如进化率的广泛分布,表明还有其他变量决定蛋白质进化的速度。在这里,我们报告说,在全球范围内选择对抗错误折叠蛋白质的细胞毒性效应下,折叠稳定性(ΔG)与丰度一起,是进化率的一个因果变量。我们使用理论分析和多尺度模拟,证明了突变前ΔG与突变效应(ΔΔG)之间的反相关关系,纯粹是由生物物理因素引起的,是丰度-进化率相关性的必要条件。此外,我们在细菌中预测并证明,丰度-进化率相关性的强度取决于分离参考基因组的分歧时间。总的来说,这些结果强调了蛋白质生物物理学在分子进化中出现的普遍模式中的内在作用。