Olsen Lars R, Simon Christian, Kudahl Ulrich J, Bagger Frederik O, Winther Ole, Reinherz Ellis L, Zhang Guang L, Brusic Vladimir
BMC Med Genomics. 2015;8 Suppl 4(Suppl 4):S1. doi: 10.1186/1755-8794-8-S4-S1. Epub 2015 Dec 9.
Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often target diverse regions in highly variable viral pathogens and this diversity may need to be addressed through redefinition of suitable peptide targets.
We have developed a method for antigen assessment and target selection for polyvalent vaccines, with which we identified immune epitopes from variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets.
We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased the number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded.
We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein or proteome using human leukocyte antigen binding predictions and made a web-accessible software implementation freely available at http://met-hilab.cbs.dtu.dk/blockcons/.
基于T细胞的疫苗靶点发现的计算方法侧重于选择在病原体变体中鉴定出的高度保守的肽段,随后预测它们与人白细胞抗原分子的结合情况。然而,实验研究表明,T细胞通常靶向高度可变病毒病原体中的不同区域,这种多样性可能需要通过重新定义合适的肽段靶点来解决。
我们开发了一种用于多价疫苗抗原评估和靶点选择的方法,利用该方法我们从所有变体均结合HLA的可变区域中鉴定出免疫表位。因此,这些区域尽管具有变异性,但就HLA结合而言可被视为稳定区域,并代表了有价值的疫苗靶点。
我们将此方法应用于预测甲型H7N9流感血凝素中的CD8+T细胞靶点,与使用排除低频肽段的传统方法发现的靶点数量相比,显著增加了潜在疫苗靶点的数量。
我们开发了一个网络服务器,其具有直观的可视化方案,可利用人白细胞抗原结合预测来总结任何给定蛋白质或蛋白质组基于T细胞的抗原潜力,并在http://met-hilab.cbs.dtu.dk/blockcons/上免费提供了可通过网络访问的软件实现。