Suppr超能文献

基于神经网络的方法预测表位。

Prediction of epitopes using neural network based methods.

机构信息

Center for Biological Sequence Analysis, DTU Systems Biology, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark.

出版信息

J Immunol Methods. 2011 Nov 30;374(1-2):26-34. doi: 10.1016/j.jim.2010.10.011. Epub 2010 Oct 31.

Abstract

In this paper, we describe the methodologies behind three different aspects of the NetMHC family for prediction of MHC class I binding, mainly to HLAs. We have updated the prediction servers, NetMHC-3.2, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in their previous versions, have been evaluated to be among the very best performing MHC:peptide binding predictors available. Here we describe the background for these methods, and the rationale behind the different optimization steps implemented in the methods. We go through the practical use of the methods, which are publicly available in the form of relatively fast and simple web interfaces. Furthermore, we will review results obtained in actual epitope discovery projects where previous implementations of the described methods have been used in the initial selection of potential epitopes. Selected potential epitopes were all evaluated experimentally using ex vivo assays.

摘要

在本文中,我们描述了 NetMHC 家族三个不同方面的方法学,主要是用于预测 MHC Ⅰ类结合,主要是与 HLA 的结合。我们已经更新了预测服务器,NetMHC-3.2、NetMHCpan-2.2 和一种新的共识方法 NetMHCcons,它们在之前的版本中被评估为性能非常优异的 MHC:肽结合预测器之一。在这里,我们描述了这些方法的背景,以及在方法中实施的不同优化步骤的基本原理。我们将介绍这些方法的实际应用,它们以相对快速和简单的 Web 界面的形式公开提供。此外,我们将回顾在实际的表位发现项目中获得的结果,其中描述的方法的以前实现已用于潜在表位的初步选择。选择的潜在表位都使用体外实验进行了实验评估。

相似文献

1
Prediction of epitopes using neural network based methods.
J Immunol Methods. 2011 Nov 30;374(1-2):26-34. doi: 10.1016/j.jim.2010.10.011. Epub 2010 Oct 31.
2
Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
PLoS Comput Biol. 2018 Nov 8;14(11):e1006457. doi: 10.1371/journal.pcbi.1006457. eCollection 2018 Nov.
3
NetMHCpan, a method for MHC class I binding prediction beyond humans.
Immunogenetics. 2009 Jan;61(1):1-13. doi: 10.1007/s00251-008-0341-z. Epub 2008 Nov 12.
4
Interaction profiling of T-cell epitopes with MHC-class I molecules.
Protein Pept Lett. 2007;14(6):557-64. doi: 10.2174/092986607780989994.
5
TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates.
Curr Protoc Immunol. 2016 Aug 1;114:18.19.1-18.19.24. doi: 10.1002/cpim.12.
6
Characterization of binding specificities of bovine leucocyte class I molecules: impacts for rational epitope discovery.
Immunogenetics. 2014 Dec;66(12):705-18. doi: 10.1007/s00251-014-0802-5. Epub 2014 Sep 4.
7
NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
Immunogenetics. 2012 Mar;64(3):177-86. doi: 10.1007/s00251-011-0579-8. Epub 2011 Oct 20.
8
Integrating peptides' sequence and energy of contact residues information improves prediction of peptide and HLA-I binding with unknown alleles.
BMC Bioinformatics. 2013;14 Suppl 8(Suppl 8):S1. doi: 10.1186/1471-2105-14-S8-S1. Epub 2013 May 9.

引用本文的文献

1
Strategies for neoantigen screening and immunogenicity validation in cancer immunotherapy (Review).
Int J Oncol. 2025 Jun;66(6). doi: 10.3892/ijo.2025.5749. Epub 2025 May 9.
3
Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies.
Vaccines (Basel). 2024 Jul 24;12(8):836. doi: 10.3390/vaccines12080836.
4
Construction by artificial intelligence and immunovalidation of hypoallergenic mite allergen Der f 36 vaccine.
Front Immunol. 2024 Mar 27;15:1325998. doi: 10.3389/fimmu.2024.1325998. eCollection 2024.
5
Characterizing and forecasting neoantigens-resulting from MUC mutations in COAD.
J Transl Med. 2024 Mar 27;22(1):315. doi: 10.1186/s12967-024-05103-z.
7
Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators.
Acta Neuropathol Commun. 2023 May 10;11(1):79. doi: 10.1186/s40478-023-01569-y.
8
T-cell epitope-based vaccine prediction against Aspergillus fumigatus: a harmful causative agent of aspergillosis.
J Genet Eng Biotechnol. 2022 May 16;20(1):72. doi: 10.1186/s43141-022-00364-x.
10
Searching Epitope-Based Vaccines Using Bioinformatics Studies.
Methods Mol Biol. 2022;2412:471-479. doi: 10.1007/978-1-0716-1892-9_26.

本文引用的文献

1
Towards in silico design of epitope-based vaccines.
Expert Opin Drug Discov. 2009 Oct;4(10):1047-60. doi: 10.1517/17460440903242283. Epub 2009 Aug 28.
2
State of the art and challenges in sequence based T-cell epitope prediction.
Immunome Res. 2010 Nov 3;6 Suppl 2(Suppl 2):S3. doi: 10.1186/1745-7580-6-S2-S3.
3
Major histocompatibility complex class I binding predictions as a tool in epitope discovery.
Immunology. 2010 Jul;130(3):309-18. doi: 10.1111/j.1365-2567.2010.03300.x. Epub 2010 May 26.
4
Interdisciplinary analysis of HIV-specific CD8+ T cell responses against variant epitopes reveals restricted TCR promiscuity.
J Immunol. 2010 May 1;184(9):5383-91. doi: 10.4049/jimmunol.0903516. Epub 2010 Apr 2.
5
Predicting MHC class I epitopes in large datasets.
BMC Bioinformatics. 2010 Feb 17;11:90. doi: 10.1186/1471-2105-11-90.
6
The immune epitope database 2.0.
Nucleic Acids Res. 2010 Jan;38(Database issue):D854-62. doi: 10.1093/nar/gkp1004. Epub 2009 Nov 11.
7
Prediction of MHC-peptide binding: a systematic and comprehensive overview.
Curr Pharm Des. 2009;15(28):3209-20. doi: 10.2174/138161209789105162.
8
Mining the Leishmania genome for novel antigens and vaccine candidates.
Proteomics. 2009 Mar;9(5):1293-301. doi: 10.1002/pmic.200800533.
9
Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays.
J Biomol Screen. 2009 Feb;14(2):173-80. doi: 10.1177/1087057108329453. Epub 2009 Feb 4.
10
An introduction to epitope prediction methods and software.
Rev Med Virol. 2009 Mar;19(2):77-96. doi: 10.1002/rmv.602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验