Suppr超能文献

前庭对腓肠肌内侧头和比目鱼肌平衡控制的作用。

Vestibular contribution to balance control in the medial gastrocnemius and soleus.

作者信息

Dakin Christopher J, Héroux Martin E, Luu Billy L, Inglis John Timothy, Blouin Jean-Sébastien

机构信息

School of Kinesiology, University of British Columbia, Vancouver, Canada; Institute of Neurology, University College London, London, United Kingdom;

School of Kinesiology, University of British Columbia, Vancouver, Canada; Neuroscience Research Australia, Sydney, Australia;

出版信息

J Neurophysiol. 2016 Mar;115(3):1289-97. doi: 10.1152/jn.00512.2015. Epub 2015 Dec 16.

Abstract

The soleus (Sol) and medial gastrocnemius (mGas) muscles have different patterns of activity during standing balance and may have distinct functional roles. Using surface electromyography we previously observed larger responses to galvanic vestibular stimulation (GVS) in the mGas compared with the Sol muscle. However, it is unclear whether this difference is an artifact that reflects limitations associated with surface electromyography recordings or whether a compensatory balance response to a vestibular error signal activates the mGas to a greater extent than the Sol. In the present study, we compared the effect of GVS on the discharge behavior of 9 Sol and 21 mGas motor units from freely standing subjects. In both Sol and mGas motor units, vestibular stimulation induced biphasic responses in measures of discharge timing [11 ± 5.0 (mGas) and 5.6 ± 3.8 (Sol) counts relative to the sham (mean ± SD)], and frequency [0.86 ± 0.6 Hz (mGas), 0.34 ± 0.2 Hz (Sol) change relative to the sham]. Peak-to-trough response amplitudes were significantly larger in the mGas (62% in the probability-based measure and 160% in the frequency-based measure) compared with the Sol (multiple P < 0.05). Our results provide direct evidence that vestibular signals have a larger influence on the discharge activity of motor units in the mGas compared with the Sol. More tentatively, these results indicate the mGas plays a greater role in vestibular-driven balance corrections during standing balance.

摘要

比目鱼肌(Sol)和内侧腓肠肌(mGas)在站立平衡过程中具有不同的活动模式,可能具有不同的功能作用。我们之前使用表面肌电图观察到,与比目鱼肌相比,内侧腓肠肌对电刺激前庭刺激(GVS)的反应更大。然而,尚不清楚这种差异是反映表面肌电图记录相关局限性的假象,还是对前庭误差信号的代偿性平衡反应对比目鱼肌更能激活内侧腓肠肌。在本研究中,我们比较了GVS对自由站立受试者的9条比目鱼肌和21条内侧腓肠肌运动单位放电行为的影响。在比目鱼肌和内侧腓肠肌运动单位中,前庭刺激均在前庭刺激诱导的放电时间测量中引起双相反应[相对于假刺激,内侧腓肠肌为11±5.0(内侧腓肠肌)和5.6±3.8(比目鱼肌)计数(平均值±标准差)],以及频率[相对于假刺激,内侧腓肠肌为0.86±0.6Hz(内侧腓肠肌),比目鱼肌为0.34±0.2Hz(比目鱼肌)变化]。与比目鱼肌相比,内侧腓肠肌的峰谷反应幅度显著更大(基于概率的测量中为62%,基于频率的测量中为160%)(多个P<0.05)。我们的结果提供了直接证据,表明前庭信号对比目鱼肌运动单位放电活动的影响大于比目鱼肌。更初步地说,这些结果表明内侧腓肠肌在站立平衡期间前庭驱动的平衡校正中发挥更大作用。

相似文献

1
Vestibular contribution to balance control in the medial gastrocnemius and soleus.
J Neurophysiol. 2016 Mar;115(3):1289-97. doi: 10.1152/jn.00512.2015. Epub 2015 Dec 16.
3
The altered vestibular-evoked myogenic and whole-body postural responses in old men during standing.
Exp Gerontol. 2014 Dec;60:120-8. doi: 10.1016/j.exger.2014.09.020. Epub 2014 Oct 14.
4
Short-duration galvanic vestibular stimulation evokes prolonged balance responses.
J Appl Physiol (1985). 2008 Oct;105(4):1210-7. doi: 10.1152/japplphysiol.01398.2006. Epub 2008 Jul 31.
5
Vestibular control of standing balance is enhanced with increased cognitive load.
Exp Brain Res. 2017 Apr;235(4):1031-1040. doi: 10.1007/s00221-016-4858-3. Epub 2016 Dec 28.
6
Postural threat influences vestibular-evoked muscular responses.
J Neurophysiol. 2017 Feb 1;117(2):604-611. doi: 10.1152/jn.00712.2016. Epub 2016 Nov 9.
7
Transformation of Vestibular Signals for the Control of Standing in Humans.
J Neurosci. 2016 Nov 9;36(45):11510-11520. doi: 10.1523/JNEUROSCI.1902-16.2016.
8
Vestibular-Evoked Responses Indicate a Functional Role for Intrinsic Foot Muscles During Standing Balance.
Neuroscience. 2018 May 1;377:150-160. doi: 10.1016/j.neuroscience.2018.02.036. Epub 2018 Mar 7.
9
Frequency-specific modulation of vestibular-evoked sway responses in humans.
J Neurophysiol. 2010 Feb;103(2):1048-56. doi: 10.1152/jn.00881.2009. Epub 2009 Dec 23.
10
Modulation of vestibular-evoked responses prior to simple and complex arm movements.
Exp Brain Res. 2020 Apr;238(4):869-881. doi: 10.1007/s00221-020-05760-8. Epub 2020 Mar 11.

引用本文的文献

1
Habituation of vestibular-evoked balance responses after repeated exposure to a postural threat.
J Physiol. 2025 Mar;603(6):1567-1587. doi: 10.1113/JP287391. Epub 2025 Feb 21.
2
Postural Control and Neuromuscular Activation in 11-13-Year-Old Athletic Boy Swimmers.
Children (Basel). 2024 Jul 16;11(7):863. doi: 10.3390/children11070863.
4
Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants.
Front Hum Neurosci. 2021 Jul 22;15:690433. doi: 10.3389/fnhum.2021.690433. eCollection 2021.
6
Postural control in paw distance after labyrinthectomy-induced vestibular imbalance.
Med Biol Eng Comput. 2020 Dec;58(12):3039-3047. doi: 10.1007/s11517-020-02276-9. Epub 2020 Oct 20.
8
Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking.
PLoS One. 2020 Apr 10;15(4):e0231334. doi: 10.1371/journal.pone.0231334. eCollection 2020.
9
Modulation of vestibular-evoked responses prior to simple and complex arm movements.
Exp Brain Res. 2020 Apr;238(4):869-881. doi: 10.1007/s00221-020-05760-8. Epub 2020 Mar 11.

本文引用的文献

2
Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.
J Neurophysiol. 2015 Jul;114(1):264-73. doi: 10.1152/jn.00114.2015. Epub 2015 Apr 29.
3
Task, muscle and frequency dependent vestibular control of posture.
Front Integr Neurosci. 2015 Jan 9;8:94. doi: 10.3389/fnint.2014.00094. eCollection 2014.
6
Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance.
J Appl Physiol (1985). 2014 Jan 15;116(2):140-8. doi: 10.1152/japplphysiol.00906.2013. Epub 2013 Dec 5.
7
Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula.
J Neurosci. 2013 Sep 18;33(38):15145-60. doi: 10.1523/JNEUROSCI.2118-13.2013.
8
Muscle-specific modulation of vestibular reflexes with increased locomotor velocity and cadence.
J Neurophysiol. 2013 Jul;110(1):86-94. doi: 10.1152/jn.00843.2012. Epub 2013 Apr 10.
9
Vestibular labyrinth contributions to human whole-body motion discrimination.
J Neurosci. 2012 Sep 26;32(39):13537-42. doi: 10.1523/JNEUROSCI.2157-12.2012.
10
Human standing is modified by an unconscious integration of congruent sensory and motor signals.
J Physiol. 2012 Nov 15;590(22):5783-94. doi: 10.1113/jphysiol.2012.230334. Epub 2012 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验