文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.

作者信息

Wu Yuehan, Lee Suk-Hee, Williamson Elizabeth A, Reinert Brian L, Cho Ju Hwan, Xia Fen, Jaiswal Aruna Shanker, Srinivasan Gayathri, Patel Bhavita, Brantley Alexis, Zhou Daohong, Shao Lijian, Pathak Rupak, Hauer-Jensen Martin, Singh Sudha, Kong Kimi, Wu Xaiohua, Kim Hyun-Suk, Beissbarth Timothy, Gaedcke Jochen, Burma Sandeep, Nickoloff Jac A, Hromas Robert A

机构信息

Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America.

Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.

出版信息

PLoS Genet. 2015 Dec 18;11(12):e1005675. doi: 10.1371/journal.pgen.1005675. eCollection 2015 Dec.


DOI:10.1371/journal.pgen.1005675
PMID:26684013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4684289/
Abstract

Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/b2df4ce5e862/pgen.1005675.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/9efe035812e0/pgen.1005675.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/3b14359c1f43/pgen.1005675.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/630bd4bdc783/pgen.1005675.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/fcdbc31becbd/pgen.1005675.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/337b0528bdbb/pgen.1005675.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/498789066eb5/pgen.1005675.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/b2df4ce5e862/pgen.1005675.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/9efe035812e0/pgen.1005675.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/3b14359c1f43/pgen.1005675.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/630bd4bdc783/pgen.1005675.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/fcdbc31becbd/pgen.1005675.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/337b0528bdbb/pgen.1005675.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/498789066eb5/pgen.1005675.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dda/4684289/b2df4ce5e862/pgen.1005675.g007.jpg

相似文献

[1]
EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.

PLoS Genet. 2015-12-18

[2]
Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks.

J Biol Chem. 2017-2-17

[3]
The homologous recombination component EEPD1 is required for genome stability in response to developmental stress of vertebrate embryogenesis.

Cell Cycle. 2016

[4]
The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells.

Breast Cancer Res. 2017-11-16

[5]
EEPD1: Breaking and Rescuing the Replication Fork.

PLoS Genet. 2016-2-4

[6]
Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells.

Proc Natl Acad Sci U S A. 2013-4-22

[7]
Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks.

Nucleic Acids Res. 2023-12-11

[8]
The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease.

Cell Cycle. 2020-11

[9]
Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination.

Proc Natl Acad Sci U S A. 2021-3-16

[10]
Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier.

PLoS Genet. 2018-7-19

引用本文的文献

[1]
The DNA Repair Component EEPD1 Regulates Actin Polymerization.

Biol Cell. 2025-7

[2]
Myristoylated Eepd1 Enhances Lipolysis and Thermogenesis through PKA Activation to Combat Obesity.

Nat Commun. 2025-1-14

[3]
attenuates radiation-induced cardiac hypertrophy and apoptosis by degrading in cardiomyocytes.

Acta Biochim Biophys Sin (Shanghai). 2024-8-29

[4]
A perspective on tumor radiation resistance following high-LET radiation treatment.

J Cancer Res Clin Oncol. 2024-5-2

[5]
EEPD1 is identified as a predictor of prognosis and immune microenvironment through pan-cancer analysis and related to progression of colorectal cancer.

Heliyon. 2024-4-4

[6]
Machine learning unveils immune-related signature in multicenter glioma studies.

iScience. 2024-2-23

[7]
Cellular Responses to Widespread DNA Replication Stress.

Int J Mol Sci. 2023-11-29

[8]
TATDN2 resolution of R-loops is required for survival of BRCA1-mutant cancer cells.

Nucleic Acids Res. 2023-12-11

[9]
DNA repair genes play a variety of roles in the development of fish embryos.

Front Cell Dev Biol. 2023-3-1

[10]
EEPD1 promotes repair of oxidatively-stressed replication forks.

NAR Cancer. 2023-1-18

本文引用的文献

[1]
DNA2 drives processing and restart of reversed replication forks in human cells.

J Cell Biol. 2015-3-2

[2]
Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ.

Nat Struct Mol Biol. 2015-3

[3]
Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair.

Nature. 2015-2-2

[4]
Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.

Nature. 2015-2-2

[5]
Homologous recombination as a replication fork escort: fork-protection and recovery.

Biomolecules. 2012-12-27

[6]
Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection.

Mol Cell. 2014-6-19

[7]
Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe.

Genes Dev. 2014-5-15

[8]
Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice.

Nat Commun. 2014-4-7

[9]
OpenComet: an automated tool for comet assay image analysis.

Redox Biol. 2014-1-9

[10]
The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart.

J Biol Chem. 2014-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索