The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
Acta Biomater. 2016 Mar 1;32:309-323. doi: 10.1016/j.actbio.2015.12.006. Epub 2015 Dec 12.
Critical size bone defects raise great demands for efficient bone substitutes. Mimicking the hierarchical porous architecture and specific biological cues of natural bone has been considered as an effective strategy to facilitate bone regeneration. Herein, a trimodal macro/micro/nano-porous scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) was developed. With mesoporous bioactive glass (MBG) as matrix, a trimodal MBG scaffold (TMS) with enhanced compressive strength (4.28 MPa, porosity of 80%) was prepared by a "viscosity controlling" and "homogeneous particle reinforcing" multi-template process. A 7.5 nm, 3D cubic (Im3m) mesoporous structure was tailored for a "size-matched entrapment" of rhBMP-2 to achieve sustained release and preserved bioactivity. RhBMP-2-loaded TMS (TMS/rhBMP-2) induced excellent cell attachment, ingrowth and osteogenesis in vitro. Further in vivo ectopic bone formation and orthotopic rabbit radius critical size defect results indicated that compared to the rhBMP-2-loaded bimodal macro/micro- and macro/nano-porous scaffolds, TMS/rhBMP-2 exhibited appealing bone regeneration capacity. Particularly, in critical size defect, complete bone reconstruction with rapid medullary cavity reunion and sclerotin maturity was observed on TMS/rhBMP-2. On the basis of these results, TMS/rhBMP-2 developed here represents a promising bone substitute for clinical application and the concepts proposed in this study might provide new thoughts on development of future orthopedic biomaterials.
Limited self-regenerating capacity of human body makes the reconstruction of critical size bone defect a significant challenge. Current bone substitutes often exhibit undesirable therapeutic efficacy due to poor osteoconductivity or low osteoinductivity. Herein, TMS/rhBMP-2, an advanced mesoporous bioactive glass (MBG) scaffold with osteoconductive trimodal macro/micro/nano-porosity and osteoinductive rhBMP-2 delivery was developed. The preparative and mechanical problems of hierarchical MBG scaffold were solved without affecting its excellent biocompatibilities, and rhBMP-2 immobilization in sizematched mesopores was first explored. Combining structural and biological cues, TMS/rhBMP-2 achieved a complete regeneration with rapid medullary cavity reunion and sclerotin maturity in rabbit radius critical size defects. The design conceptions proposed in this study might provide new thoughts on development of future orthopedic biomaterials.
临界尺寸骨缺损对高效骨替代物提出了很高的要求。模仿天然骨的分级多孔结构和特定的生物学线索被认为是促进骨再生的有效策略。在此,开发了一种加载重组人骨形态发生蛋白-2(rhBMP-2)的三模态大/微/纳多孔支架。以介孔生物活性玻璃(MBG)为基质,通过“粘度控制”和“均匀颗粒增强”多模板工艺制备了一种具有增强抗压强度(4.28 MPa,孔隙率为 80%)的三模态 MBG 支架(TMS)。定制了一种 7.5nm、3D 立方(Im3m)介孔结构,用于 rhBMP-2 的“尺寸匹配包封”,以实现持续释放和保持生物活性。载 rhBMP-2 的 TMS(TMS/rhBMP-2)在体外诱导了优异的细胞附着、生长和成骨。进一步的异位骨形成和兔桡骨临界尺寸缺损的体内结果表明,与载 rhBMP-2 的双模态大/微和大/纳多孔支架相比,TMS/rhBMP-2 表现出了吸引人的骨再生能力。特别是在临界尺寸缺损中,在 TMS/rhBMP-2 上观察到快速髓腔融合和骨成熟的完全骨重建。基于这些结果,本研究开发的 TMS/rhBMP-2 代表了一种有前途的临床应用骨替代物,本研究提出的概念可能为未来骨科生物材料的发展提供新的思路。
人体自我再生能力有限,使得临界尺寸骨缺损的重建成为一个重大挑战。目前的骨替代物由于成骨活性或成骨诱导性差,往往表现出不理想的治疗效果。在此,开发了一种具有成骨活性三模态大/微/纳多孔结构和骨诱导 rhBMP-2 输送的先进介孔生物活性玻璃(MBG)支架 TMS/rhBMP-2。解决了分级 MBG 支架的制备和力学问题,而不影响其优异的生物相容性,并首次探索了 rhBMP-2 在尺寸匹配介孔中的固定。TMS/rhBMP-2 结合结构和生物学线索,在兔桡骨临界尺寸缺损中实现了完全再生,髓腔快速融合,骨成熟。本研究提出的设计理念可能为未来骨科生物材料的发展提供新的思路。