文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications.

作者信息

Cui Ya, Hong Shebin, Jiang Weidong, Li Xiaojing, Zhou Xingyu, He Xiaoya, Liu Jiaqiang, Lin Kaili, Mao Lixia

机构信息

Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China.

出版信息

Bioact Mater. 2024 Jan 12;34:436-462. doi: 10.1016/j.bioactmat.2024.01.001. eCollection 2024 Apr.


DOI:10.1016/j.bioactmat.2024.01.001
PMID:38282967
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10821497/
Abstract

Mesoporous bioactive glasses (MBGs), which belong to the category of modern porous nanomaterials, have garnered significant attention due to their impressive biological activities, appealing physicochemical properties, and desirable morphological features. They hold immense potential for utilization in diverse fields, including adsorption, separation, catalysis, bioengineering, and medicine. Despite possessing interior porous structures, excellent morphological characteristics, and superior biocompatibility, primitive MBGs face challenges related to weak encapsulation efficiency, drug loading, and mechanical strength when applied in biomedical fields. It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies, miscellaneous metal species, and their conjugates into the material surfaces or intrinsic mesoporous networks. The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications, such as stimuli-responsive drug delivery, with exceptional in-vivo performances. In view of the above, we outline the fabrication process of calcium-silicon-phosphorus based MBGs, followed by discussions on their significant progress in various engineered strategies involving surface functionalization, nanostructures, and network modification. Furthermore, we emphasize the recent advancements in the textural and physicochemical properties of MBGs, along with their theranostic potentials in multiple cancerous and non-cancerous diseases. Lastly, we recapitulate compelling viewpoints, with specific considerations given from bench to bedside.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/1300cf110eaa/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/f5b8249c6d69/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/c776d5a993e1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/e8ddad7442db/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/3cd5f2c6506f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/04f3912a541b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/9509c21f8840/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/295667663e5c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/44279692e20f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/bee3f06b13e9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/fa66bb05deba/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/b0f20c8d3907/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/1730ab67a9cb/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/481e7cb5f6d5/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/9d6d81546273/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/0b5fe8e63dd4/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/ae952e9dc1f1/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/7f6050339072/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/1300cf110eaa/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/f5b8249c6d69/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/c776d5a993e1/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/e8ddad7442db/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/3cd5f2c6506f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/04f3912a541b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/9509c21f8840/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/295667663e5c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/44279692e20f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/bee3f06b13e9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/fa66bb05deba/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/b0f20c8d3907/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/1730ab67a9cb/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/481e7cb5f6d5/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/9d6d81546273/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/0b5fe8e63dd4/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/ae952e9dc1f1/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/7f6050339072/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93d6/10821497/1300cf110eaa/gr17.jpg

相似文献

[1]
Engineering mesoporous bioactive glasses for emerging stimuli-responsive drug delivery and theranostic applications.

Bioact Mater. 2024-1-12

[2]
Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles.

Adv Mater. 2020-6

[3]
Achievements in Mesoporous Bioactive Glasses for Biomedical Applications.

Pharmaceutics. 2022-11-29

[4]
Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation.

Adv Sci (Weinh). 2022-1

[5]
Mesoporous bioactive glasses for regenerative medicine.

Mater Today Bio. 2021-6-29

[6]
Prevention of bacterial adhesion to zwitterionic biocompatible mesoporous glasses.

Acta Biomater. 2017-7-15

[7]
3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)-Fundamentals and Applications.

Materials (Basel). 2020-4-4

[8]
Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy.

Materials (Basel). 2021-6-17

[9]
A Guided Walk through the World of Mesoporous Bioactive Glasses (MBGs): Fundamentals, Processing, and Applications.

Nanomaterials (Basel). 2020-12-21

[10]
Strontium- and Cobalt-Doped Multicomponent Mesoporous Bioactive Glasses (MBGs) for Potential Use in Bone Tissue Engineering Applications.

Materials (Basel). 2020-3-16

引用本文的文献

[1]
Applications of Tailored Mesoporous Silicate Nanomaterials in Regenerative Medicine and Theranostics.

Int J Mol Sci. 2025-8-16

[2]
Bioglasses Versus Bioactive Calcium Phosphate Derivatives as Advanced Ceramics in Tissue Engineering: Comparative and Comprehensive Study, Current Trends, and Innovative Solutions.

J Funct Biomater. 2025-5-3

[3]
Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma.

Exp Hematol Oncol. 2025-4-30

[4]
Osteogenic and Antibacterial Response of Levofloxacin-Loaded Mesoporous Nanoparticles Functionalized with -Acetylcysteine.

Pharmaceutics. 2025-4-15

[5]
Application of 3D Printing Technology in Dentistry: A Review.

Polymers (Basel). 2025-3-26

[6]
Advancements in mesoporous bioactive glasses for effective bone cancer therapy: Recent developments and future perspectives.

Biomater Biosyst. 2025-2-15

[7]
Stimulus-responsive smart bioactive glass composites for repair of complex tissue defects.

Theranostics. 2025-1-2

[8]
Dual release scaffolds as a promising strategy for enhancing bone regeneration: an updated review.

Nanomedicine (Lond). 2025-2

[9]
Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing.

Int J Nanomedicine. 2024-12-27

[10]
Impact of Strontium, Magnesium, and Zinc Ions on the In Vitro Osteogenesis of Maxillary Sinus Membrane Stem Cells.

Biol Trace Elem Res. 2025-4

本文引用的文献

[1]
Bioactive Glasses-Based Nanozymes Composite Macroporous Cryogel with Antioxidative, Antibacterial, and Pro-Healing Properties for Diabetic Infected Wound Repair.

Adv Healthc Mater. 2023-11

[2]
Injectable mesoporous bioactive glass/sodium alginate hydrogel loaded with melatonin for intervertebral disc regeneration.

Mater Today Bio. 2023-7-17

[3]
Selenium-Doped Mesoporous Bioactive Glass Regulates Macrophage Metabolism and Polarization by Scavenging ROS and Promotes Bone Regeneration .

ACS Appl Mater Interfaces. 2023-7-26

[4]
Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles.

Acta Biomater. 2023-1-1

[5]
Novel insights into nanomaterials for immunomodulatory bone regeneration.

Nanoscale Adv. 2021-11-29

[6]
Screening microbially produced Δ-tetrahydrocannabinol using a yeast biosensor workflow.

Nat Commun. 2022-9-20

[7]
AuNPs/CdS QDs/CeO ternary nanocomposite coupled with scrollable three-dimensional DNA walker mediated cycling amplification for sensitive photoelectrochemical miRNA assay.

Anal Chim Acta. 2022-10-2

[8]
Ultrasenstive SERS biosensor based on Zn from ZnO nanoparticle assisted DNA enzyme amplification for detection of miRNA.

Anal Chim Acta. 2022-10-2

[9]
A photoelectrochemical biosensor based on b-TiO/CdS:Eu/TiC heterojunction for the ultrasensitive detection of miRNA-21.

Talanta. 2023-2-1

[10]
Laser direct write of heteroatom-doped graphene on molecularly controlled polyimides for electrochemical biosensors with nanomolar sensitivity.

Carbon N Y. 2022-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索