Suppr超能文献

用于生物标志物微流控筛选的多维纳米结构:从分子分离到癌细胞检测

Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection.

作者信息

Ng Elaine, Chen Kaina, Hang Annie, Syed Abeer, Zhang John X J

机构信息

Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.

Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.

出版信息

Ann Biomed Eng. 2016 Apr;44(4):847-62. doi: 10.1007/s10439-015-1521-2. Epub 2015 Dec 21.

Abstract

Rapid screening of biomarkers, with high specificity and accuracy, is critical for many point-of-care diagnostics. Microfluidics, the use of microscale channels to manipulate small liquid samples and carry reactions in parallel, offers tremendous opportunities to address fundamental questions in biology and provide a fast growing set of clinical tools for medicine. Emerging multi-dimensional nanostructures, when coupled with microfluidics, enable effective and efficient screening with high specificity and sensitivity, both of which are important aspects of biological detection systems. In this review, we provide an overview of current research and technologies that utilize nanostructures to facilitate biological separation in microfluidic channels. Various important physical parameters and theoretical equations that characterize and govern flow in nanostructure-integrated microfluidic channels will be introduced and discussed. The application of multi-dimensional nanostructures, including nanoparticles, nanopillars, and nanoporous layers, integrated with microfluidic channels in molecular and cellular separation will also be reviewed. Finally, we will close with insights on the future of nanostructure-integrated microfluidic platforms and their role in biological and biomedical applications.

摘要

快速筛选具有高特异性和准确性的生物标志物,对于许多即时诊断至关重要。微流控技术,即利用微尺度通道来操控小液体样本并并行进行反应,为解决生物学中的基本问题提供了巨大机遇,并为医学提供了一套快速发展的临床工具。新兴的多维纳米结构与微流控技术相结合,能够实现具有高特异性和高灵敏度的有效且高效的筛选,这两者都是生物检测系统的重要方面。在本综述中,我们概述了当前利用纳米结构促进微流控通道中生物分离的研究和技术。将介绍并讨论表征和控制纳米结构集成微流控通道中流动的各种重要物理参数和理论方程。还将综述多维纳米结构,包括纳米颗粒、纳米柱和纳米多孔层,与微流控通道集成在分子和细胞分离中的应用。最后,我们将对纳米结构集成微流控平台的未来及其在生物和生物医学应用中的作用给出见解。

相似文献

1
Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection.
Ann Biomed Eng. 2016 Apr;44(4):847-62. doi: 10.1007/s10439-015-1521-2. Epub 2015 Dec 21.
2
Recent progress of inertial microfluidic-based cell separation.
Analyst. 2021 Nov 22;146(23):7070-7086. doi: 10.1039/d1an01160j.
3
Nanomaterial-assisted microfluidics for multiplex assays.
Mikrochim Acta. 2022 Mar 11;189(4):139. doi: 10.1007/s00604-022-05226-4.
4
Label-free microfluidic cell sorting and detection for rapid blood analysis.
Lab Chip. 2023 Mar 1;23(5):1226-1257. doi: 10.1039/d2lc00904h.
6
Microfluidics and cancer: are we there yet?
Biomed Microdevices. 2013 Aug;15(4):595-609. doi: 10.1007/s10544-012-9734-8.
7
Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
Biotechnol J. 2017 Apr;12(4). doi: 10.1002/biot.201600699. Epub 2017 Feb 6.
8
Droplet-Based Preparation of ZnO-nanostructure Array for Microfluidic Fluorescence Biodetection.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5401-5411. doi: 10.1021/acsami.3c14319. Epub 2024 Jan 25.
9
Droplet-based microfluidics in biomedical applications.
Biofabrication. 2022 Jan 24;14(2). doi: 10.1088/1758-5090/ac39a9.
10
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.

引用本文的文献

1
Role of Cell Adhesion in Cancer Metastasis Formation: A Review.
ACS Omega. 2025 Feb 9;10(6):5193-5213. doi: 10.1021/acsomega.4c08140. eCollection 2025 Feb 18.
2
Microfluidics for detection of exosomes and microRNAs in cancer: State of the art.
Mol Ther Nucleic Acids. 2022 Apr 27;28:758-791. doi: 10.1016/j.omtn.2022.04.011. eCollection 2022 Jun 14.
4
Recent advances in microfluidic methods in cancer liquid biopsy.
Biomicrofluidics. 2019 Jul 23;13(4):041503. doi: 10.1063/1.5087690. eCollection 2019 Jul.
5
Microfluidic Technology for Clinical Applications of Exosomes.
Micromachines (Basel). 2019 Jun 12;10(6):392. doi: 10.3390/mi10060392.
6
Electroosmotic Flow in Microchannel with Black Silicon Nanostructures.
Micromachines (Basel). 2018 May 11;9(5):229. doi: 10.3390/mi9050229.
7
Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review.
Anal Chim Acta. 2017 Sep 15;986:1-11. doi: 10.1016/j.aca.2017.07.043. Epub 2017 Jul 24.

本文引用的文献

1
Self-assembled inorganic/organic hybrid nanoparticles with multi-functionalized surfaces for active targeting drug delivery.
J Mater Chem B. 2013 Sep 14;1(34):4243-4250. doi: 10.1039/c3tb20455c. Epub 2013 Jul 8.
2
Arrangement of a nanostructure array to control equilibrium and nonequilibrium transports of macromolecules.
Nano Lett. 2015 May 13;15(5):3445-51. doi: 10.1021/acs.nanolett.5b00783. Epub 2015 Apr 28.
4
The present and future role of microfluidics in biomedical research.
Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118.
5
Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles.
Nano Lett. 2014 May 14;14(5):2365-71. doi: 10.1021/nl404771g. Epub 2014 Apr 7.
6
On-chip separation and analysis of RNA and DNA from single cells.
Anal Chem. 2014 Feb 18;86(4):1953-7. doi: 10.1021/ac4040218. Epub 2014 Feb 5.
7
Biosensors: the new wave in cancer diagnosis.
Nanotechnol Sci Appl. 2010 Dec 30;4:1-10. doi: 10.2147/NSA.S13465.
9
Versatile immunomagnetic nanocarrier platform for capturing cancer cells.
ACS Nano. 2013 Oct 22;7(10):8816-23. doi: 10.1021/nn403281e. Epub 2013 Sep 12.
10
Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface.
Methods. 2013 Oct;63(3):266-75. doi: 10.1016/j.ymeth.2013.07.043. Epub 2013 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验