Suppr超能文献

用于测量气溶胶团聚体表面积的扩散充电法和基于迁移率的方法的比较。

Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

作者信息

Ku Bon Ki, Kulkarni Pramod

机构信息

Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), 4676 Columbia Parkway, MS-R3, Cincinnati, Ohio 45226, USA.

出版信息

J Aerosol Sci. 2012 May;47:100-110. doi: 10.1016/j.jaerosci.2012.01.002.

Abstract

We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

摘要

我们比较了测量气溶胶团聚体表面积的不同方法。目的是将基于迁移率和扩散充电等现场方法与用于散装粉末样品的实验室方法(如布鲁诺尔、埃米特、泰勒(BET)法)进行比较。为了便于对各种表面积测量结果进行相互比较,我们定义了团聚体的“几何表面积”(假设团聚体由理想球体组成),并将各种表面积测量结果与几何表面积进行比较。使用以下方法比较了测量尺寸范围为60 - 350 nm的团聚体颗粒表面积的四种不同方法:(i)来自三个不同制造商的基于扩散充电的传感器,(ii)团聚体的迁移直径,(iii)假设具有均匀初级粒径的线性链形态的团聚体的迁移直径,以及(iv)基于串联迁移率 - 质量测量和显微镜的表面积估计。我们的结果表明,与BET方法不同,串联迁移率 - 质量测量可直接应用于空气中的颗粒,与BET方法吻合良好。研究还表明,在研究的尺寸范围内,银团聚体的三种基于扩散充电的表面积测量结果在2倍的范围内相似,并且比通过串联迁移率 - 质量和显微镜方法获得的结果低3 - 10倍。使用迁移直径估计的表面积取决于团聚体的结构或形态,在高分形维数接近3时会有显著低估。

相似文献

3
Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
Langmuir. 2009 Jul 21;25(14):8248-54. doi: 10.1021/la900441e.
4
Mobility and settling rate of agglomerates of polydisperse nanoparticles.
J Chem Phys. 2018 Feb 14;148(6):064703. doi: 10.1063/1.5012037.
5
Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
Langmuir. 2018 Jul 24;34(29):8532-8541. doi: 10.1021/acs.langmuir.8b00576. Epub 2018 Jul 13.
6
The Structure of Agglomerates consisting of Polydisperse Particles.
Aerosol Sci Technol. 2012 Mar;46(3):347-353. doi: 10.1080/02786826.2011.631956.
8
Measurement of Transport Properties of Aerosolized Nanomaterials.
J Aerosol Sci. 2015 Dec;90:169-181. doi: 10.1016/j.jaerosci.2015.09.001.
9
Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.
J Aerosol Sci. 2012 Apr;46:7-19. doi: 10.1016/j.jaerosci.2011.11.005.

引用本文的文献

1
Thermal annealing modulates the structural, optical, and antibacterial properties of Cu-based nanoparticles.
RSC Adv. 2025 Sep 2;15(38):31498-31507. doi: 10.1039/d5ra04198h. eCollection 2025 Aug 29.
3
Identifying Patterns and Sources of Fine and Ultrafine Particulate Matter in London Using Mobile Measurements of Lung-Deposited Surface Area.
Environ Sci Technol. 2023 Jan 10;57(1):96-108. doi: 10.1021/acs.est.2c08096. Epub 2022 Dec 22.
4
Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols.
J Toxicol Environ Health A. 2023 Jan 2;86(1):1-22. doi: 10.1080/15287394.2022.2150730. Epub 2022 Nov 29.
5
Non-doped and transition metal-doped CuO nano-powders: structure-physical properties and anti-adhesion activity relationship.
RSC Adv. 2022 Aug 18;12(36):23527-23543. doi: 10.1039/d2ra02433k. eCollection 2022 Aug 16.
6
Towards health-based nano reference values (HNRVs) for occupational exposure: Recommendations from an expert panel.
NanoImpact. 2022 Apr;26:100396. doi: 10.1016/j.impact.2022.100396. Epub 2022 Mar 17.
7
Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions.
J Aerosol Sci. 2019 Nov;137. doi: 10.1016/j.jaerosci.2019.105445. Epub 2019 Aug 31.
8
Toward Developing a New Occupational Exposure Metric Approach for Characterization of Diesel Aerosols.
Aerosol Sci Technol. 2012 Dec;46(12):1370-1381. doi: 10.1080/02786826.2012.715781.
9
Evaluation of a diffusion charger for measuring aerosols in a workplace.
Ann Occup Hyg. 2014 May;58(4):424-36. doi: 10.1093/annhyg/met082. Epub 2014 Jan 23.
10
Properties that influence the specific surface areas of carbon nanotubes and nanofibers.
Ann Occup Hyg. 2013 Nov;57(9):1148-66. doi: 10.1093/annhyg/met042. Epub 2013 Sep 12.

本文引用的文献

1
Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties.
Nanoscale Res Lett. 2011 Dec;6(1):27. doi: 10.1007/s11671-010-9772-1. Epub 2010 Sep 3.
2
Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.
Ann Occup Hyg. 2010 Jul;54(5):514-31. doi: 10.1093/annhyg/meq015. Epub 2010 May 6.
4
In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis.
Nanotechnology. 2006 Jul 28;17(14):3613-21. doi: 10.1088/0957-4484/17/14/042. Epub 2006 Jun 26.
5
Ultrafine particle characteristics in seven industrial plants.
Ann Occup Hyg. 2009 Jul;53(5):475-84. doi: 10.1093/annhyg/mep033. Epub 2009 May 15.
7
Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling.
Toxicol Sci. 2009 Jul;110(1):191-203. doi: 10.1093/toxsci/kfp051. Epub 2009 Mar 6.
10
Toxic potential of materials at the nanolevel.
Science. 2006 Feb 3;311(5761):622-7. doi: 10.1126/science.1114397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验