Suppr超能文献

湿度对二氧化硅纳米颗粒团聚体形态和粒径分布的影响。

Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.

机构信息

Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering , ETH Zürich , Sonneggstrasse 3 , CH-8092 Zürich , Switzerland.

出版信息

Langmuir. 2018 Jul 24;34(29):8532-8541. doi: 10.1021/acs.langmuir.8b00576. Epub 2018 Jul 13.

Abstract

The effect of humidity on flame-made metal oxide agglomerate morphology and size distribution is investigated, for the first time to our knowledge, and compared to that on soot, which has been widely studied. Understanding the impact of humidity on such characteristics is essential for storage, handling, processing, and eventual performance of nanomaterials. More specifically, broadly used agglomerates of flame-made silica nanoparticles are humidified at various saturation ratios, S = 0.2-1.5, and dried before characterization with a differential mobility analyzer (DMA), an aerosol particle mass (APM) analyzer, and transmission electron microscopy. At high humidity, the constituent single and/or aggregated (chemically bonded) primary particles (PPs) rearrange to balance the capillary forces induced by condensation-evaporation of liquid bridges between PPs. Larger agglomerates restructure more than smaller ones, narrowing their mobility size distribution. After humidification at S = 1.5 and drying, agglomerates collapse into compact structures that follow a fractal scaling law with mass-mobility exponent D = 3.02 ± 0.11 and prefactor k = 0.27 ± 0.07. This critical S = 1.5 for silica agglomerates is larger than the 1.26 obtained for soot because of the hydrophilic surface of silica that delays water evaporation. The relative effective density, ρ/ρ, of collapsed agglomerates becomes invariant of mobility diameter, d, similar to that of fluidized and spray-dried granules. The average silica ρ/ρ = 0.28 ± 0.02 is smaller than the 0.36 ± 0.04 measured for the humidified-dried soot because of the larger size of silica aggregates, d/ d, and number of constituent primary particles, n, of diameter d. This is verified by tandem-DMA (TDMA) measurements, yielding maximum d = 3 d or 5 d and n = 13 or 36 for the soot or silica aggregates studied here, in good agreement with those reported from microscopy and high-pressure agglomerate dispersion. A scaling law relating the initial d to d, D, and k after condensation-drying is developed. The mass-mobility relationship of collapsed silica and soot agglomerates obtained by combining this law with fast TDMA measurements is in excellent agreement with that measured by the direct, but tedious, DMA-APM analysis.

摘要

首次研究了湿度对火焰法金属氧化物团聚体形态和粒径分布的影响,并与已广泛研究的烟灰进行了比较。了解湿度对这些特性的影响对于纳米材料的储存、处理、加工和最终性能至关重要。更具体地说,广泛使用的火焰法二氧化硅纳米颗粒团聚体在各种饱和度比 S = 0.2-1.5 下加湿,然后用差分迁移率分析仪 (DMA)、气溶胶颗粒质量 (APM) 分析仪和透射电子显微镜进行干燥前的特性分析。在高湿度下,组成的单个和/或聚集(化学键合)的初级颗粒 (PP) 重新排列以平衡由 PP 之间的液桥凝结-蒸发引起的毛细力。较大的团聚体比较小的团聚体更容易重新结构,从而使它们的迁移率分布变窄。在 S = 1.5 加湿和干燥后,团聚体塌缩成遵循质量迁移指数 D = 3.02 ± 0.11 和预因子 k = 0.27 ± 0.07 的分形标度律的紧密结构。对于二氧化硅团聚体,临界 S = 1.5 大于对于烟灰的 1.26,因为二氧化硅的亲水性表面会延迟水蒸发。塌缩团聚体的相对有效密度 ρ/ρ,对于迁移直径 d 变得不变,类似于流化和喷雾干燥颗粒的情况。平均二氧化硅 ρ/ρ = 0.28 ± 0.02 小于加湿干燥烟灰的 0.36 ± 0.04,这是因为二氧化硅团聚体的尺寸较大,d/ d,以及直径为 d 的组成初级颗粒 n 的数量。这通过串联 DMA (TDMA) 测量得到验证,对于这里研究的烟灰或二氧化硅团聚体,最大 d = 3 d 或 5 d 和 n = 13 或 36,与显微镜和高压团聚体分散报告的值非常吻合。建立了一种将初始 d 与 d、D 和 k 关联的冷凝干燥后标度律。将该定律与快速 TDMA 测量相结合,得到塌缩的二氧化硅和烟灰团聚体的质量迁移关系,与直接但繁琐的 DMA-APM 分析测量的结果非常吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验