Suppr超能文献

高、低峰值摄氧量人群的线粒体偶联与收缩效率

Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks.

作者信息

Layec Gwenael, Bringard Aurélien, Le Fur Yann, Micallef Jean-Paul, Vilmen Christophe, Perrey Stéphane, Cozzone Patrick J, Bendahan David

机构信息

1Aix-Marseille University, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Unite Mixte de Recherche 7339, Marseille, FRANCE; 2Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT; 3Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT; 4Department of Anesthesiology, Pharmacology and Intensive Care and Department of Fundamental Neurosciences, University of Geneva, SWITZERLAND; 5Motricity Efficiency and Deficiency, EA 2991, Faculty of Sport Science, Unite de Formation et de Recherche en Sciences et Techniques des Activites Physiques et Sportives, Montpellier, FRANCE; 6INSERM ADR 08, Montpellier, FRANCE.

出版信息

Med Sci Sports Exerc. 2016 May;48(5):811-21. doi: 10.1249/MSS.0000000000000858.

Abstract

INTRODUCTION

Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity.

METHOD

We simultaneously assessed the ATP synthesis and O2 fluxes with P-magnetic resonance spectroscopy and pulmonary gas exchange measurements in seven endurance-trained (ET, V˙O2max: 67 ± 8 mL·min⁻¹·kg⁻¹) and seven recreationally active (RA, V˙O2max: 43 ± 7 mL·min⁻¹·kg⁻¹) subjects during 6 min of dynamic moderate-intensity knee extension.

RESULTS

The ATP cost of dynamic contraction was not significantly different between ET and RA (P > 0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848 ± 155 mL·min⁻¹ and RA: 760 ± 131 mL·min⁻¹, P > 0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared with RA (ET: 32 ± 8 s and RA: 43 ± 10 s, P < 0.05), thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0 ± 1.0 and RA: 1.8 ± 0.4, P > 0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity, and/or slower postexercise inactivation of oxidative phosphorylation by the parallel activation mechanism.

CONCLUSION

Together, these findings reveal that 1) mitochondrial and contractile efficiencies are unaltered by several years of endurance training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling.

摘要

引言

耐力训练能引发线粒体能量代谢能力的巨大适应性变化。然而,训练或体能对运动期间线粒体效率的影响仍不明确。因此,本研究的目的是在体内检测两组有氧能力不同的成年人在运动期间线粒体效率和收缩的ATP消耗的差异。

方法

我们采用磷磁共振波谱和肺气体交换测量技术,同时评估了7名耐力训练者(ET,最大摄氧量:67±8 mL·min⁻¹·kg⁻¹)和7名休闲活动者(RA,最大摄氧量:43±7 mL·min⁻¹·kg⁻¹)在6分钟动态中等强度伸膝运动期间的ATP合成和氧气通量。

结果

ET组和RA组之间动态收缩的ATP消耗无显著差异(P>0.05)。同样,运动结束时的氧气消耗在两组之间也无显著差异(ET组:848±155 mL·min⁻¹,RA组:760±131 mL·min⁻¹,P>0.05)。在恢复期,ET组的磷酸肌酸恢复时间常数显著快于RA组(ET组:32±8秒,RA组:43±10秒,P<0.05),这表明ET组股四头肌中ATP合成的线粒体能力增强。相反,运动期间估计的线粒体效率无显著差异(P/O,ET组:2.0±1.0,RA组:1.8±0.4,P>0.05)。因此,ET组中较高的ATP合成线粒体能力可能源于线粒体体积密度升高、线粒体特异性呼吸能力增强和/或平行激活机制导致的运动后氧化磷酸化失活减慢。

结论

总之,这些发现表明:1)在年轻人中,数年的耐力训练不会改变线粒体和收缩效率;2)训练引起的线粒体能量代谢能力的提高似乎与线粒体偶联的变化无关。

相似文献

1
Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks.
Med Sci Sports Exerc. 2016 May;48(5):811-21. doi: 10.1249/MSS.0000000000000858.
2
Elevated energy coupling and aerobic capacity improves exercise performance in endurance-trained elderly subjects.
Exp Physiol. 2013 Apr;98(4):899-907. doi: 10.1113/expphysiol.2012.069633. Epub 2012 Nov 30.
3
Exercise efficiency is reduced by mitochondrial uncoupling in the elderly.
Exp Physiol. 2013 Mar;98(3):768-77. doi: 10.1113/expphysiol.2012.067314. Epub 2012 Oct 19.
4
Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles.
Am J Physiol Regul Integr Comp Physiol. 2015 Apr 15;308(8):R724-33. doi: 10.1152/ajpregu.00461.2014. Epub 2015 Feb 18.
6
Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16701-6. doi: 10.1073/pnas.0808889105. Epub 2008 Oct 20.
7
Large energetic adaptations of elderly muscle to resistance and endurance training.
J Appl Physiol (1985). 2001 May;90(5):1663-70. doi: 10.1152/jappl.2001.90.5.1663.
8
Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension.
J Physiol. 2014 Dec 1;592(23):5287-300. doi: 10.1113/jphysiol.2014.279174. Epub 2014 Oct 3.

引用本文的文献

2
Relationship between recovery of neuromuscular function and subsequent capacity to work above critical power.
Eur J Appl Physiol. 2020 Jun;120(6):1237-1249. doi: 10.1007/s00421-020-04338-0. Epub 2020 Apr 21.

本文引用的文献

2
Training-induced acceleration of O(2) uptake on-kinetics precedes muscle mitochondrial biogenesis in humans.
Exp Physiol. 2013 Apr;98(4):883-98. doi: 10.1113/expphysiol.2012.069443. Epub 2012 Nov 30.
5
Specific effects of endurance and sprint training on protein expression of calsequestrin and SERCA in mouse skeletal muscle.
J Muscle Res Cell Motil. 2012 Jun;33(2):123-30. doi: 10.1007/s10974-012-9290-0. Epub 2012 Mar 31.
6
Gas exchange measurements within a magnetic environment: validation of a new system.
Respir Physiol Neurobiol. 2012 Jun 15;182(1):37-46. doi: 10.1016/j.resp.2012.02.005. Epub 2012 Feb 17.
7
Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans.
Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R1078-87. doi: 10.1152/ajpregu.00285.2011. Epub 2011 Jul 20.
8
Different timing of changes in mitochondrial functions following endurance training.
Med Sci Sports Exerc. 2012 Feb;44(2):217-24. doi: 10.1249/MSS.0b013e31822b0bd4.
9
Mitochondrial structure and function are disrupted by standard isolation methods.
PLoS One. 2011 Mar 28;6(3):e18317. doi: 10.1371/journal.pone.0018317.
10
Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice.
Exp Biol Med (Maywood). 2010 Apr;235(4):497-505. doi: 10.1258/ebm.2009.009165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验