Suppr超能文献

液体的集体模式和热力学。

Collective modes and thermodynamics of the liquid state.

机构信息

School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.

出版信息

Rep Prog Phys. 2016 Jan;79(1):016502. doi: 10.1088/0034-4885/79/1/016502. Epub 2015 Dec 22.

Abstract

Strongly interacting, dynamically disordered and with no small parameter, liquids took a theoretical status between gases and solids with the historical tradition of hydrodynamic description as the starting point. We review different approaches to liquids as well as recent experimental and theoretical work, and propose that liquids do not need classifying in terms of their proximity to gases and solids or any categorizing for that matter. Instead, they are a unique system in their own class with a notably mixed dynamical state in contrast to pure dynamical states of solids and gases. We start with explaining how the first-principles approach to liquids is an intractable, exponentially complex problem of coupled non-linear oscillators with bifurcations. This is followed by a reduction of the problem based on liquid relaxation time τ representing non-perturbative treatment of strong interactions. On the basis of τ, solid-like high-frequency modes are predicted and we review related recent experiments. We demonstrate how the propagation of these modes can be derived by generalizing either hydrodynamic or elasticity equations. We comment on the historical trend to approach liquids using hydrodynamics and compare it to an alternative solid-like approach. We subsequently discuss how collective modes evolve with temperature and how this evolution affects liquid energy and heat capacity as well as other properties such as fast sound. Here, our emphasis is on understanding experimental data in real, rather than model, liquids. Highlighting the dominant role of solid-like high-frequency modes for liquid energy and heat capacity, we review a wide range of liquids: subcritical low-viscous liquids, supercritical state with two different dynamical and thermodynamic regimes separated by the Frenkel line, highly-viscous liquids in the glass transformation range and liquid-glass transition. We subsequently discuss the fairly recent area of liquid-liquid phase transitions, the area where the solid-like properties of liquids have become further apparent. We then discuss gas-like and solid-like approaches to quantum liquids and theoretical issues that are similar to the classical case. Finally, we summarize the emergent view of liquids as a unique system with a mixed dynamical state, and list several areas where interesting insights may appear and continue the extraordinary liquid story.

摘要

液体具有强烈相互作用、动态无序且没有小参数,其理论地位处于气体和固体之间,历史上一直以流体动力学描述为起点。我们综述了不同的液体处理方法以及最近的实验和理论工作,并提出液体不需要根据其与气体和固体的接近程度或任何分类来分类。相反,它们是一个独特的系统,具有明显混合的动力学状态,与纯气体和固体的动力学状态形成对比。我们首先解释了如何将液体的第一性原理方法视为具有分叉的耦合非线性振荡器的棘手、指数复杂问题。接着,我们基于液体弛豫时间τ来简化问题,τ代表对强相互作用的非微扰处理。基于τ,我们预测了固态的高频模式,并综述了相关的最新实验。我们演示了如何通过推广流体动力学或弹性方程来推导这些模式的传播。我们评论了使用流体动力学来研究液体的历史趋势,并将其与替代的固态方法进行了比较。随后,我们讨论了集体模式如何随温度演变,以及这种演变如何影响液体的能量和热容以及其他性质,如快声。在这里,我们强调的是理解真实而非模型液体中的实验数据。我们强调固态高频模式对液体能量和热容的主导作用,综述了广泛的液体:亚临界低粘性液体、超临界状态,其具有由弗伦克尔线分隔的两种不同的动力学和热力学区域、高粘性液体的玻璃转变范围和液-玻璃转变。随后,我们讨论了液体-液体相变这一相当新的领域,在这个领域中,液体的固态特性变得更加明显。然后,我们讨论了量子液体的气态和固态方法以及与经典情况相似的理论问题。最后,我们总结了液体作为一个具有混合动力学状态的独特系统的新兴观点,并列出了几个可能出现有趣见解的领域,并继续讲述这个非凡的液体故事。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验