Andersen Stephen J, Candry Pieter, Basadre Thais, Khor Way Cern, Roume Hugo, Hernandez-Sanabria Emma, Coma Marta, Rabaey Korneel
Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, Building A, Room A0.092, B-9000 Ghent, Belgium.
Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, Building A, Room A0.092, B-9000 Ghent, Belgium ; Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY UK.
Biotechnol Biofuels. 2015 Dec 21;8:221. doi: 10.1186/s13068-015-0396-7. eCollection 2015.
Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2).
In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation.
VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is metabolized by species such as Megasphaera elsdenii to produce greater value, more reduced VFA. Electro-fermentation displays promise for generating added value chemical co-products from biorefinery sidestreams and wastes.
挥发性脂肪酸(VFA)是化学工业的基础原料。可持续的生物生产受到生产和回收成本的限制,包括对强烈pH调节的需求。膜电解已被开发为一种原位萃取技术,适用于从发酵液中直接回收VFA,同时在不添加苛性碱的情况下稳定产酸过程。施加在阴离子交换膜上的电流可降低发酵液(阴极电解液,水还原:H2O + e(-) → ½ H2 + OH(-)),并将羧酸根离子驱入纯净、浓缩的VFA流中(阳极电解液,水氧化:H2O → 2e(-) + 2H(+) + O2)。
在本研究中,我们发酵稀釜馏物以生成混合VFA提取物,无需化学pH控制。膜电解(0.1 A,3.22 ± 0.60 V)每天提取产酸量的28 ± 6%(以碳计)的羧酸盐,并完全取代了对pH的苛性碱控制,且对总羧酸盐产量或速率没有影响。施加电流产生的氢气使发酵结果从主要为C2和C3 VFA(占对照中总VFA的64 ± 3%)转变为大部分为C4至C6 VFA(实验中为70 ± 12%),VFA酸提取物中的比例相同。与埃氏巨球型菌相关的菌株(最大丰度为57%),一种能够高速产生中链VFA的细菌,因施加电流而富集,同时还有稳定的乳酸杆菌属群落(10%),使得VFA能够通过乳酸进行链延长。每进料sCOD产生的VFA转化率达到30 ± 5%(反应部分的60 ± 10%),通过电凝聚可能使悬浮固体减少50 ± 6%。
VFA可通过膜电解直接从发酵液中提取。电解水还原产物用于发酵:OH(-)用于pH控制而无需添加化学物质,H2被埃氏巨球型菌等微生物代谢以产生更有价值、还原度更高的VFA。电发酵有望从生物炼制侧流和废物中生成增值化学副产物。