Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA, 98195-2700, USA.
ISME J. 2023 Nov;17(11):2014-2022. doi: 10.1038/s41396-023-01508-8. Epub 2023 Sep 15.
Granular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified. Instead, the outer 150-500 µm of the granular biofilm consisted of a well-mixed community of Olsenella and Oscillospiraceae, while deeper layers were made up of other bacteria with lower activities. Second, nanoSIMS analysis of N incorporation in biofilms grown in normal and lactic acid amended conditions suggested Oscillospiraceae switched from sugars to lactic acid as substrate. This suggests competitive-cooperative interactions may govern the spatial organization of these biofilms, and suggests that optimizing biofilm size may be a suitable process engineering strategy. Third, growth activities were similar in the polar and equatorial biofilm peripheries, leaving the mechanism behind the lenticular biofilm morphology unexplained. Physical processes (e.g., shear hydrodynamics, biofilm life cycles) may have contributed to lenticular biofilm development. Together, this study develops an ecological framework of MCCA-producing granular biofilms that informs bioprocess development.
从富含碳水化合物的工业原料中生产中链羧酸(MCCA)的颗粒状生物膜拥有高度精简的群落,可直接或通过乳酸作为中间产物将糖转化为 MCCA。我们研究了在工业侧流上生长的产 MCCA 颗粒状生物膜的空间组织和生长活性模式,以测试:(i)是否关键功能群(基于底物使用分层的产乳酸 Olsenella 和产 MCCA 的 Oscillospiraceae)在生物膜中分层,以及(ii)生长活性的空间模式是否塑造了这些生物膜独特的透镜状形态。首先,获得了代表颗粒状生物膜群落一半以上的三个新分离株(一个 Olsenella 和两个 Oscillospiraceae 种),并用于开发 FISH 探针,结果表明关键功能群没有分层。相反,颗粒状生物膜的外 150-500 μm 由 Olsenella 和 Oscillospiraceae 的混合群落组成,而更深的层则由活性较低的其他细菌组成。其次,在正常和添加乳酸的条件下生长的生物膜中 N 掺入的 nanoSIMS 分析表明,Oscillospiraceae 从糖切换到乳酸作为底物。这表明竞争-合作相互作用可能控制这些生物膜的空间组织,并表明优化生物膜大小可能是一种合适的过程工程策略。第三,极地和赤道生物膜边缘的生长活性相似,这使得透镜状生物膜形态背后的机制仍未得到解释。物理过程(例如,剪切流动力学、生物膜生命周期)可能促成了透镜状生物膜的发展。总之,这项研究为产 MCCA 的颗粒状生物膜建立了一个生态框架,为生物工艺开发提供了信息。