Suppr超能文献

从牛心线粒体中纯化活性呼吸超复合物可进行功能研究。

Purification of Active Respiratory Supercomplex from Bovine Heart Mitochondria Enables Functional Studies.

作者信息

Shinzawa-Itoh Kyoko, Shimomura Harunobu, Yanagisawa Sachiko, Shimada Satoru, Takahashi Ryoko, Oosaki Marika, Ogura Takashi, Tsukihara Tomitake

机构信息

From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan,

From the Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Koto, Kamighori, Akoh, Hyogo, 678-1297, Japan.

出版信息

J Biol Chem. 2016 Feb 19;291(8):4178-84. doi: 10.1074/jbc.M115.680553. Epub 2015 Dec 23.

Abstract

To understand the roles of mitochondrial respiratory chain supercomplexes, methods for consistently separating and preparing supercomplexes must be established. To this end, we solubilized supercomplexes from bovine heart mitochondria with digitonin and then replaced digitonin with amphipol (A8-35), an amphiphilic polymer. Afterward, supercomplexes were separated from other complexes by sucrose density gradient centrifugation. Twenty-six grams of bovine myocardium yielded 3.2 mg of amphipol-stabilized supercomplex. The purified supercomplexes were analyzed based on their absorption spectra as well as Q10 (ubiquinone with ten isoprene units) and lipid assays. The supercomplex sample did not contain cytochrome c but did contain complexes I, III, and IV at a ratio of 1:2:1, 6 molecules of Q10, and 623 atoms of phosphorus. When cytochrome c was added, the supercomplex exhibited KCN-sensitive NADH oxidation; thus, the purified supercomplex was active. Reduced complex IV absorbs at 444 nm, so we measured the resonance Raman spectrum of the reduced amphipol-solubilized supercomplex and the mixture of amphipol-solubilized complexes I1, III2, and IV1 using an excitation wavelength of 441.6 nm, allowing measurement precision comparable with that obtained for complex IV alone. Use of the purified active sample provides insights into the effects of supercomplex formation.

摘要

为了了解线粒体呼吸链超复合物的作用,必须建立能够持续分离和制备超复合物的方法。为此,我们先用洋地黄皂苷溶解牛心线粒体中的超复合物,然后用两亲聚合物两性离子聚合物(A8 - 35)取代洋地黄皂苷。之后,通过蔗糖密度梯度离心将超复合物与其他复合物分离。26克牛心肌组织可产生3.2毫克两性离子聚合物稳定的超复合物。基于其吸收光谱以及辅酶Q10(含有十个异戊二烯单元的泛醌)和脂质分析对纯化后的超复合物进行分析。超复合物样品不含细胞色素c,但含有比例为1:2:1的复合物I、III和IV、6个辅酶Q10分子以及623个磷原子。当加入细胞色素c时,超复合物表现出对氰化钾敏感的NADH氧化作用;因此,纯化后的超复合物具有活性。还原态的复合物IV在444纳米处有吸收峰,所以我们使用441.6纳米的激发波长测量了还原态两性离子聚合物溶解的超复合物以及两性离子聚合物溶解的复合物I1、III2和IV1混合物的共振拉曼光谱,测量精度与单独测量复合物IV时相当。使用纯化后的活性样品有助于深入了解超复合物形成所产生的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e960/4759192/2dfb4dab81f7/zbc0091637510001.jpg

相似文献

1
Purification of Active Respiratory Supercomplex from Bovine Heart Mitochondria Enables Functional Studies.
J Biol Chem. 2016 Feb 19;291(8):4178-84. doi: 10.1074/jbc.M115.680553. Epub 2015 Dec 23.
2
A unique respiratory adaptation in Drosophila independent of supercomplex formation.
Biochim Biophys Acta Bioenerg. 2018 Feb;1859(2):154-163. doi: 10.1016/j.bbabio.2017.11.007. Epub 2017 Dec 2.
3
4
Monomeric structure of an active form of bovine cytochrome oxidase.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19945-19951. doi: 10.1073/pnas.1907183116. Epub 2019 Sep 18.
6
Respiratory chain supercomplexes in plant mitochondria.
Plant Physiol Biochem. 2004 Dec;42(12):937-42. doi: 10.1016/j.plaphy.2004.09.010. Epub 2005 Jan 21.
7
Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria.
Biochemistry. 2007 Nov 6;46(44):12579-85. doi: 10.1021/bi700983h. Epub 2007 Oct 10.
8
Respiratory chain supercomplexes of mitochondria and bacteria.
Biochim Biophys Acta. 2002 Sep 10;1555(1-3):154-9. doi: 10.1016/s0005-2728(02)00271-2.
9
Architecture of active mammalian respiratory chain supercomplexes.
J Biol Chem. 2006 Jun 2;281(22):15370-5. doi: 10.1074/jbc.M513525200. Epub 2006 Mar 20.
10
Genetic variability of respiratory complex abundance, organization and activity in mouse brain.
Genes Brain Behav. 2014 Feb;13(2):135-43. doi: 10.1111/gbb.12101. Epub 2013 Nov 15.

引用本文的文献

1
Synergistic targeting of cancer cells through simultaneous inhibition of key metabolic enzymes.
Cell Death Differ. 2025 Jun 23. doi: 10.1038/s41418-025-01532-5.
2
The Interplay between Dysregulated Metabolism and Epigenetics in Cancer.
Biomolecules. 2023 Jun 5;13(6):944. doi: 10.3390/biom13060944.
3
The 1.3-Å resolution structure of bovine cytochrome oxidase suggests a dimerization mechanism.
BBA Adv. 2021 Mar 21;1:100009. doi: 10.1016/j.bbadva.2021.100009. eCollection 2021.
4
Mitochondrial Respiratory Chain Supercomplexes: From Structure to Function.
Int J Mol Sci. 2022 Nov 10;23(22):13880. doi: 10.3390/ijms232213880.
5
6
Mitochondria as a Cellular Hub in Infection and Inflammation.
Int J Mol Sci. 2021 Oct 20;22(21):11338. doi: 10.3390/ijms222111338.
7
Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome oxidase.
Biophys Physicobiol. 2021 Jul 16;18:186-195. doi: 10.2142/biophysico.bppb-v18.020. eCollection 2021.
8
Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly.
Nat Chem Biol. 2021 Jun;17(6):703-710. doi: 10.1038/s41589-021-00772-z. Epub 2021 Mar 15.
10
STAT3 Localizes in Mitochondria-Associated ER Membranes Instead of in Mitochondria.
Front Cell Dev Biol. 2020 Apr 22;8:274. doi: 10.3389/fcell.2020.00274. eCollection 2020.

本文引用的文献

1
Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.
2
Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15735-40. doi: 10.1073/pnas.1413855111. Epub 2014 Oct 20.
3
Architecture of mammalian respiratory complex I.
Nature. 2014 Nov 6;515(7525):80-84. doi: 10.1038/nature13686. Epub 2014 Sep 7.
5
The function of the respiratory supercomplexes: the plasticity model.
Biochim Biophys Acta. 2014 Apr;1837(4):444-50. doi: 10.1016/j.bbabio.2013.12.009. Epub 2013 Dec 22.
6
Functional role of mitochondrial respiratory supercomplexes.
Biochim Biophys Acta. 2014 Apr;1837(4):427-43. doi: 10.1016/j.bbabio.2013.11.002. Epub 2013 Nov 15.
7
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
Biochim Biophys Acta. 2014 Apr;1837(4):418-26. doi: 10.1016/j.bbabio.2013.10.004. Epub 2013 Oct 30.
9
Supercomplex assembly determines electron flux in the mitochondrial electron transport chain.
Science. 2013 Jun 28;340(6140):1567-70. doi: 10.1126/science.1230381.
10
Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I.
Antioxid Redox Signal. 2013 Nov 1;19(13):1469-80. doi: 10.1089/ars.2012.4845. Epub 2013 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验