文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

代谢失调与癌症表观遗传学的相互作用

The Interplay between Dysregulated Metabolism and Epigenetics in Cancer.

机构信息

Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.

Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Biomolecules. 2023 Jun 5;13(6):944. doi: 10.3390/biom13060944.


DOI:10.3390/biom13060944
PMID:37371524
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10296273/
Abstract

Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.

摘要

细胞代谢(或能量学)和表观遗传学是紧密偶联的细胞过程。可以说,在所有描述的癌症特征中,失调的细胞能量学和表观遗传学是调控最紧密的。细胞代谢状态调节和驱动表观遗传变化,同时也能够影响(如果不是驱动)表观遗传重编程。相反,表观遗传变化可以驱动改变和补偿的代谢状态。癌细胞精心修饰和控制这两个相互关联的细胞过程中的每一个,以维持其致瘤潜能和能力。本综述旨在探讨这两个过程之间的相互作用,并讨论它们彼此如何影响,在某些情况下驱动和增强致瘤状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/bfa0a4acc794/biomolecules-13-00944-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/6b22b5593536/biomolecules-13-00944-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/df7482eeb342/biomolecules-13-00944-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/4b06d02d522c/biomolecules-13-00944-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/9e0a287de01c/biomolecules-13-00944-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/e64e541fa048/biomolecules-13-00944-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/031a0b8eb2cc/biomolecules-13-00944-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/219bb03fc5e6/biomolecules-13-00944-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/b8fa2e1b3fe3/biomolecules-13-00944-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/1954e5e819cd/biomolecules-13-00944-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/b044107249d0/biomolecules-13-00944-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/94464016933d/biomolecules-13-00944-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/7f24285ac1b0/biomolecules-13-00944-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/bf61425ee4a4/biomolecules-13-00944-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/99e54f216bdc/biomolecules-13-00944-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/1251d2cf34b9/biomolecules-13-00944-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/40d19d467cff/biomolecules-13-00944-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/0ddceedc8dca/biomolecules-13-00944-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/042b3239f693/biomolecules-13-00944-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/bfa0a4acc794/biomolecules-13-00944-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/6b22b5593536/biomolecules-13-00944-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/df7482eeb342/biomolecules-13-00944-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/4b06d02d522c/biomolecules-13-00944-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/9e0a287de01c/biomolecules-13-00944-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/e64e541fa048/biomolecules-13-00944-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/031a0b8eb2cc/biomolecules-13-00944-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/219bb03fc5e6/biomolecules-13-00944-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/b8fa2e1b3fe3/biomolecules-13-00944-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/1954e5e819cd/biomolecules-13-00944-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/b044107249d0/biomolecules-13-00944-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/94464016933d/biomolecules-13-00944-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/7f24285ac1b0/biomolecules-13-00944-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/bf61425ee4a4/biomolecules-13-00944-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/99e54f216bdc/biomolecules-13-00944-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/1251d2cf34b9/biomolecules-13-00944-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/40d19d467cff/biomolecules-13-00944-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/0ddceedc8dca/biomolecules-13-00944-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/042b3239f693/biomolecules-13-00944-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca30/10296273/bfa0a4acc794/biomolecules-13-00944-g019.jpg

相似文献

[1]
The Interplay between Dysregulated Metabolism and Epigenetics in Cancer.

Biomolecules. 2023-6-5

[2]
Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities.

Cancer Commun (Lond). 2022-11

[3]
Metabolic recoding of epigenetics in cancer.

Cancer Commun (Lond). 2018-5-21

[4]
Dysregulated metabolism contributes to oncogenesis.

Semin Cancer Biol. 2015-12

[5]
Targeting the interplay between metabolism and epigenetics in cancer.

Curr Opin Oncol. 2019-3

[6]
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer.

Biomolecules. 2021-9-25

[7]
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches.

Oncogene. 2017-6-15

[8]
Connections between metabolism and epigenetics in cancers.

Semin Cancer Biol. 2019-6-8

[9]
Metabolic reprogramming and epigenetic modifications on the path to cancer.

Protein Cell. 2022-12

[10]
MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications.

Biomolecules. 2021-10-17

引用本文的文献

[1]
CpX Hunter web tool allows high-throughput identification of CpG, CpA, CpT, and CpC islands: A case study in Drosophila genome.

J Biol Chem. 2025-4-24

[2]
Epigenetic Mechanisms of Endocrine-Disrupting Chemicals in Breast Cancer and Their Impact on Dietary Intake.

J Xenobiot. 2024-12-24

[3]
Allicin and Cancer Hallmarks.

Molecules. 2024-3-15

本文引用的文献

[1]
GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT.

J Exp Clin Cancer Res. 2023-2-7

[2]
Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges.

Adv Exp Med Biol. 2022

[3]
Epigenetic Reprogramming of the Glucose Metabolic Pathways by the Chromatin Effectors During Cancer.

Subcell Biochem. 2022

[4]
Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease.

Subcell Biochem. 2022

[5]
Modulation of DNA/RNA Methylation Signaling Mediating Metabolic Homeostasis in Cancer.

Subcell Biochem. 2022

[6]
Reprogramming Carbohydrate Metabolism in Cancer and Its Role in Regulating the Tumor Microenvironment.

Subcell Biochem. 2022

[7]
Isocitrate Dehydrogenase and Mutations in Human Cancer: Prognostic Implications for Gliomas.

Br J Biomed Sci. 2022

[8]
The first-in-human phase I study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas.

Neuro Oncol. 2023-2-14

[9]
Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia.

Nat Commun. 2022-5-12

[10]
Complex roles of nicotinamide N-methyltransferase in cancer progression.

Cell Death Dis. 2022-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索