Suppr超能文献

胰腺β细胞内钙水平对葡萄糖激酶的调节

Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic β Cells.

作者信息

Markwardt Michele L, Seckinger Kendra M, Rizzo Megan A

机构信息

From the University of Maryland School of Medicine, Baltimore, Maryland 21201.

From the University of Maryland School of Medicine, Baltimore, Maryland 21201

出版信息

J Biol Chem. 2016 Feb 5;291(6):3000-9. doi: 10.1074/jbc.M115.692160. Epub 2015 Dec 23.

Abstract

Glucokinase (GCK) controls the rate of glucose metabolism in pancreatic β cells, and its activity is rate-limiting for insulin secretion. Posttranslational GCK activation can be stimulated through either G protein-coupled receptors or receptor tyrosine kinase signaling pathways, suggesting a common mechanism. Here we show that inhibiting Ca(2+) release from the endoplasmic reticulum (ER) decouples GCK activation from receptor stimulation. Furthermore, pharmacological release of ER Ca(2+) stimulates activation of a GCK optical biosensor and potentiates glucose metabolism, implicating rises in cytoplasmic Ca(2+) as a critical regulatory mechanism. To explore the potential for glucose-stimulated GCK activation, the GCK biosensor was optimized using circularly permuted mCerulean3 proteins. This new sensor sensitively reports activation in response to insulin, glucagon-like peptide 1, and agents that raise cAMP levels. Transient, glucose-stimulated GCK activation was observed in βTC3 and MIN6 cells. An ER-localized channelrhodopsin was used to manipulate the cytoplasmic Ca(2+) concentration in cells expressing the optimized FRET-GCK sensor. This permitted quantification of the relationship between cytoplasmic Ca(2+) concentrations and GCK activation. Half-maximal activation of the FRET-GCK sensor was estimated to occur at ∼400 nm Ca(2+). When expressed in islets, fluctuations in GCK activation were observed in response to glucose, and we estimated that posttranslational activation of GCK enhances glucose metabolism by ∼35%. These results suggest a mechanism for integrative control over GCK activation and, therefore, glucose metabolism and insulin secretion through regulation of cytoplasmic Ca(2+) levels.

摘要

葡萄糖激酶(GCK)控制胰腺β细胞中的葡萄糖代谢速率,其活性对胰岛素分泌起限速作用。翻译后GCK的激活可通过G蛋白偶联受体或受体酪氨酸激酶信号通路来刺激,这表明存在一种共同机制。在此我们表明,抑制内质网(ER)释放Ca(2+)会使GCK激活与受体刺激脱钩。此外,ER Ca(2+)的药理学释放会刺激GCK光学生物传感器的激活并增强葡萄糖代谢,这表明细胞质Ca(2+)的升高是一种关键的调节机制。为了探索葡萄糖刺激的GCK激活的潜力,使用环状排列的mCerulean3蛋白对GCK生物传感器进行了优化。这种新传感器能灵敏地报告对胰岛素、胰高血糖素样肽1以及提高cAMP水平的试剂的反应激活情况。在βTC3和MIN6细胞中观察到了短暂的、葡萄糖刺激的GCK激活。使用内质网定位的通道视紫红质来操纵表达优化后的FRET-GCK传感器的细胞中的细胞质Ca(2+)浓度。这使得能够量化细胞质Ca(2+)浓度与GCK激活之间的关系。估计FRET-GCK传感器的半数最大激活发生在约400 nM Ca(2+)时。当在胰岛中表达时,观察到GCK激活随葡萄糖而波动,并且我们估计GCK的翻译后激活使葡萄糖代谢增强了约35%。这些结果提示了一种对GCK激活进行综合控制的机制,因此,通过调节细胞质Ca(2+)水平对葡萄糖代谢和胰岛素分泌进行综合控制。

相似文献

1
Regulation of Glucokinase by Intracellular Calcium Levels in Pancreatic β Cells.
J Biol Chem. 2016 Feb 5;291(6):3000-9. doi: 10.1074/jbc.M115.692160. Epub 2015 Dec 23.
2
Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic beta cells.
J Biol Chem. 2011 May 13;286(19):16768-74. doi: 10.1074/jbc.M110.192799. Epub 2011 Mar 25.
3
Naturally occurring glucokinase mutations are associated with defects in posttranslational S-nitrosylation.
Mol Endocrinol. 2010 Jan;24(1):171-7. doi: 10.1210/me.2009-0138. Epub 2009 Nov 24.
4
Nitric Oxide Activates β-Cell Glucokinase by Promoting Formation of the "Glucose-Activated" State.
Biochemistry. 2018 Aug 28;57(34):5136-5144. doi: 10.1021/acs.biochem.8b00333. Epub 2018 Aug 10.
5
6
Impaired β-cell glucokinase as an underlying mechanism in diet-induced diabetes.
Dis Model Mech. 2018 Jun 13;11(6):dmm033316. doi: 10.1242/dmm.033316.
9
Effects of liraglutide on β-cell-specific glucokinase-deficient neonatal mice.
Endocrinology. 2012 Jul;153(7):3066-75. doi: 10.1210/en.2012-1165. Epub 2012 May 8.
10
Newer perspective on the coupling between glucose-mediated signaling and β-cell functionality.
Endocr J. 2020 Jan 28;67(1):1-8. doi: 10.1507/endocrj.EJ19-0335. Epub 2019 Nov 6.

引用本文的文献

1
Oscillatory signal decoding within the ERK cascade.
bioRxiv. 2025 Jul 28:2025.07.24.666680. doi: 10.1101/2025.07.24.666680.
4
Genetic and inflammatory factors underlying gestational diabetes mellitus: a review.
Front Endocrinol (Lausanne). 2024 Apr 17;15:1399694. doi: 10.3389/fendo.2024.1399694. eCollection 2024.
5
TRPV4 Regulates the Macrophage Metabolic Response to Limit Sepsis-induced Lung Injury.
Am J Respir Cell Mol Biol. 2024 Jun;70(6):457-467. doi: 10.1165/rcmb.2023-0456OC.
6
Functional Characterization of a Novel Heterozygous Mutation in the Glucokinase Gene That Causes MODY2 in Chinese Pedigrees.
Front Endocrinol (Lausanne). 2021 Dec 9;12:803992. doi: 10.3389/fendo.2021.803992. eCollection 2021.
7
Genetic deficiency or pharmacological inhibition of soluble epoxide hydrolase ameliorates high fat diet-induced pancreatic β-cell dysfunction and loss.
Free Radic Biol Med. 2021 Aug 20;172:48-57. doi: 10.1016/j.freeradbiomed.2021.05.029. Epub 2021 May 24.
8
The Two-Way Relationship Between Calcium and Metabolism in Cancer.
Front Cell Dev Biol. 2020 Nov 13;8:573747. doi: 10.3389/fcell.2020.573747. eCollection 2020.
10
Reducing Glucokinase Activity to Enhance Insulin Secretion: A Counterintuitive Theory to Preserve Cellular Function and Glucose Homeostasis.
Front Endocrinol (Lausanne). 2020 Jun 9;11:378. doi: 10.3389/fendo.2020.00378. eCollection 2020.

本文引用的文献

1
Monitoring C-Peptide Storage and Secretion in Islet β-Cells In Vitro and In Vivo.
Diabetes. 2016 Mar;65(3):699-709. doi: 10.2337/db15-1264. Epub 2015 Dec 8.
2
Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease.
Physiol Rev. 2015 Apr;95(2):513-48. doi: 10.1152/physrev.00013.2014.
3
Differential stimulation of insulin secretion by GLP-1 and Kisspeptin-10.
PLoS One. 2014 Nov 17;9(11):e113020. doi: 10.1371/journal.pone.0113020. eCollection 2014.
4
5
Glucagon regulates hepatic kisspeptin to impair insulin secretion.
Cell Metab. 2014 Apr 1;19(4):667-81. doi: 10.1016/j.cmet.2014.03.005.
6
Frequency decoding of calcium oscillations.
Biochim Biophys Acta. 2014 Mar;1840(3):964-9. doi: 10.1016/j.bbagen.2013.11.015. Epub 2013 Nov 22.
8
Direct autocrine action of insulin on β-cells: does it make physiological sense?
Diabetes. 2013 Jul;62(7):2157-63. doi: 10.2337/db13-0246.
9
Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase.
PLoS Biol. 2012;10(12):e1001452. doi: 10.1371/journal.pbio.1001452. Epub 2012 Dec 18.
10
Proinsulin intermolecular interactions during secretory trafficking in pancreatic β cells.
J Biol Chem. 2013 Jan 18;288(3):1896-906. doi: 10.1074/jbc.M112.420018. Epub 2012 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验