Ding Shi-Ying, Tribble Nicholas D, Kraft Catherine A, Markwardt Michele, Gloyn Anna L, Rizzo Mark A
Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
Mol Endocrinol. 2010 Jan;24(1):171-7. doi: 10.1210/me.2009-0138. Epub 2009 Nov 24.
Posttranslational activation of glucokinase (GCK) through S-nitrosylation has been recently observed in the insulin-secreting pancreatic beta-cell; however, the function of this molecular mechanism in regulating the physiology of insulin secretion is not well understood. To more fully understand the function of posttranslational regulation of GCK, we examined two naturally occurring GCK mutations that map to residues proximal to the S-nitrosylated cysteine and cause mild fasting hyperglycemia (maturity-onset diabetes of the young; subtype glucokinase). The kinetics of recombinantly generated GCK-R369P and GCK-V367M were assessed in vitro. The GCK-R369P protein has greatly reduced catalytic activity (relative activity index 0.05 vs. 1.00 for wild type), whereas the GCK-V367M has near normal kinetics (relative activity index 1.26 vs. 1.00 for wild type). Quantitative imaging and biochemical assays were used to assess the effect of these mutants on the metabolic response to glucose, GCK activation, and S-nitrosylation of GCK in betaTC3 insulinoma cells. Expression of either mutant in betaTC3 cells did not affect the metabolic response to 5 mM glucose. However, expression of either mutant blocked the effects of insulin on glucose-stimulated nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate reduction, suggesting defects in posttranslational regulation of GCK. Each of these mutations blocked GCK activation, and prevented posttranslational cysteine S-nitrosylation. Our findings link defects in hormone-regulated GCK S-nitrosylation to hyperglycemia and support a role for posttranslational regulation of GCK S-nitrosylation as a vital regulatory mechanism for glucose-stimulated insulin secretion.
最近在分泌胰岛素的胰腺β细胞中观察到通过S-亚硝基化对葡萄糖激酶(GCK)进行的翻译后激活;然而,这种分子机制在调节胰岛素分泌生理功能方面的作用尚未得到充分了解。为了更全面地了解GCK翻译后调控的功能,我们研究了两个自然发生的GCK突变,这些突变位于与S-亚硝基化半胱氨酸相邻的残基上,并导致轻度空腹高血糖(青年发病型糖尿病;亚型葡萄糖激酶)。在体外评估了重组生成的GCK-R369P和GCK-V367M的动力学。GCK-R369P蛋白的催化活性大大降低(相对活性指数为0.05,而野生型为1.00),而GCK-V367M具有接近正常的动力学(相对活性指数为1.26,而野生型为1.00)。使用定量成像和生化分析来评估这些突变体对βTC3胰岛素瘤细胞中葡萄糖代谢反应、GCK激活和GCK的S-亚硝基化的影响。在βTC3细胞中表达任何一种突变体均不影响对5 mM葡萄糖的代谢反应。然而,任何一种突变体的表达均阻断了胰岛素对葡萄糖刺激的烟酰胺腺嘌呤二核苷酸和烟酰胺腺嘌呤二核苷酸磷酸还原的影响,提示GCK翻译后调控存在缺陷。这些突变中的每一个都阻断了GCK激活,并阻止了翻译后半胱氨酸S-亚硝基化。我们的研究结果将激素调节的GCK S-亚硝基化缺陷与高血糖联系起来,并支持GCK S-亚硝基化的翻译后调控作为葡萄糖刺激的胰岛素分泌的重要调控机制的作用。