De Coster Diane, Ottevaere Heidi, Vervaeke Michael, Van Erps Jürgen, Callewaert Manly, Wuytens Pieter, Simpson Stephen H, Hanna Simon, De Malsche Wim, Thienpont Hugo
Opt Express. 2015 Nov 30;23(24):30991-1009. doi: 10.1364/OE.23.030991.
We present a microfluidic chip in Polymethyl methacrylate (PMMA) for optical trapping of particles in an 80µm wide microchannel using two counterpropagating single-mode beams. The trapping fibers are separated from the sample fluid by 70µm thick polymer walls. We calculate the optical forces that act on particles flowing in the microchannel using wave optics in combination with non-sequential ray-tracing and further mathematical processing. Our results are compared with a theoretical model and the Mie theory. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we show the trapping capabilities of the hot embossed chip by trapping spherical beads with a diameter of 6µm, 8µm and 10µm and use the power spectrum analysis of the trapped particle displacements to characterize the trap strength.
我们展示了一种聚甲基丙烯酸甲酯(PMMA)材质的微流控芯片,该芯片利用两束反向传播的单模光束,在一个80微米宽的微通道中对颗粒进行光学捕获。捕获光纤与样品流体被70微米厚的聚合物壁隔开。我们结合波动光学、非序列光线追踪以及进一步的数学处理,计算作用于在微通道中流动的颗粒上的光学力。我们将结果与理论模型和米氏理论进行比较。我们采用了一种新颖的制造工艺,该工艺包括用于制造模具的预铣削步骤和超精密金刚石加工以及用于复制的双面热压印,从而制造出一种用于光学捕获的坚固微流控芯片。在概念验证演示中,我们通过捕获直径为6微米、8微米和10微米的球形珠子,展示了热压印芯片的捕获能力,并利用捕获颗粒位移的功率谱分析来表征捕获强度。