Suppr超能文献

NELL-1促进人血管周干细胞的软骨分化加速

Accelerated Chondrogenic Differentiation of Human Perivascular Stem Cells with NELL-1.

作者信息

Li Chen-Shuang, Zhang Xinli, Péault Bruno, Jiang Jie, Ting Kang, Soo Chia, Zhou Yan-Heng

机构信息

1 Department of Orthodontics, Peking University , School and Hospital of Stomatology, Beijing, P.R. China .

2 Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California , Los Angeles, Los Angeles, California.

出版信息

Tissue Eng Part A. 2016 Feb;22(3-4):272-85. doi: 10.1089/ten.TEA.2015.0250. Epub 2016 Jan 27.

Abstract

Osteoarthritis is the leading cause of disability in the US. Consequently, there is a pressing need for restoring the structural and functional properties of diseased articular cartilage. Yet the search for the right combination of proper target cells and growth factors for cartilage regeneration remains challenging. In this study, we first tested the intrinsic chondrogenic differentiation ability of human perivascular stem cells (hPSCs), a novel source of mesenchymal stem cells (MSCs) isolated by fluorescence-activated cell sorting (FACS) from human adipose tissue. A putative prochondrogenic growth factor, NEL-like molecule-1 (NELL-1), was added to the hPSC pellets to upregulate gene expression of chondrogenic markers, including AGGRECAN, COLLAGEN II, and COMP. Furthermore, the addition of NELL-1 to a transforming growth factor beta 3 (TGF-β3) + bone morphogenetic protein-6 (BMP-6) "cocktail" resulted in the best combinatorial stimulation in accelerating the chondrogenic differentiation of hPSCs, as evidenced by increased gene and protein expression of chondrogenic markers in a shortened induction time without elevating expression of hypertrophic, fibrotic, and osteogenic markers. Mechanistically, this acceleration rendered by NELL-1 may be partially attributed to NELL-1's upregulation of BMP receptors and TGF-β receptor type I in hPSCs for increased responsiveness to BMPs + TGF-βs. In conclusion, lipoaspirate-derived hPSCs present a novel and abundant cell source of MSCs for cartilage regeneration, and the combinatorial application of NELL-1, TGF-β3, and BMP-6 with hPSCs may remarkably enhance and accelerate cartilage repair.

摘要

骨关节炎是美国导致残疾的主要原因。因此,迫切需要恢复患病关节软骨的结构和功能特性。然而,寻找合适的靶细胞和生长因子的正确组合以实现软骨再生仍然具有挑战性。在本研究中,我们首先测试了人血管周干细胞(hPSC)的内在软骨形成分化能力,hPSC是一种通过荧光激活细胞分选(FACS)从人脂肪组织中分离出来的新型间充质干细胞(MSC)来源。将一种假定的促软骨形成生长因子,NEL样分子-1(NELL-1)添加到hPSC沉淀中,以上调软骨形成标志物的基因表达,包括聚集蛋白聚糖、胶原蛋白II和软骨寡聚基质蛋白(COMP)。此外,将NELL-1添加到转化生长因子β3(TGF-β3)+骨形态发生蛋白-6(BMP-6)“鸡尾酒”中,在加速hPSC软骨形成分化方面产生了最佳的组合刺激,这表现为在缩短的诱导时间内软骨形成标志物的基因和蛋白表达增加,而不提高肥大、纤维化和成骨标志物的表达。从机制上讲,NELL-1带来的这种加速作用可能部分归因于NELL-1上调了hPSC中BMP受体和I型TGF-β受体,从而增强了对BMPs + TGF-βs的反应性。总之,抽脂来源的hPSC为软骨再生提供了一种新型且丰富的MSC细胞来源,并且NELL-1、TGF-β3和BMP-6与hPSC的联合应用可能显著增强和加速软骨修复。

相似文献

1
Accelerated Chondrogenic Differentiation of Human Perivascular Stem Cells with NELL-1.
Tissue Eng Part A. 2016 Feb;22(3-4):272-85. doi: 10.1089/ten.TEA.2015.0250. Epub 2016 Jan 27.
2
FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells.
J Biomed Mater Res A. 2010 Sep 1;94(3):978-87. doi: 10.1002/jbm.a.32761.
5
Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein.
Tissue Eng Part A. 2013 Jun;19(11-12):1386-97. doi: 10.1089/ten.TEA.2012.0367. Epub 2013 Apr 4.
6
New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation.
Eur J Pharm Biopharm. 2017 May;114:69-78. doi: 10.1016/j.ejpb.2016.12.021. Epub 2017 Jan 10.

引用本文的文献

1
Modern experimental methods for assessing the effectiveness of tissue-engineered products for hyaline cartilage regeneration.
Front Bioeng Biotechnol. 2025 Jul 21;13:1595116. doi: 10.3389/fbioe.2025.1595116. eCollection 2025.
2
Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review).
Int J Mol Med. 2025 Jan;55(1). doi: 10.3892/ijmm.2024.5446. Epub 2024 Oct 25.
3
Editorial: Chondrogenic potentials, protocols and mechanisms of mesenchymal progenitor cells.
Front Cell Dev Biol. 2023 Sep 15;11:1289438. doi: 10.3389/fcell.2023.1289438. eCollection 2023.
4
The current state of the osteoarthritis drug development pipeline: a comprehensive narrative review of the present challenges and future opportunities.
Ther Adv Musculoskelet Dis. 2022 Dec 7;14:1759720X221085952. doi: 10.1177/1759720X221085952. eCollection 2022.
5
Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption.
Stem Cell Res Ther. 2022 Sep 30;13(1):486. doi: 10.1186/s13287-022-03140-3.
6
Updates on mesenchymal stem cell therapies for articular cartilage regeneration in large animal models.
Front Cell Dev Biol. 2022 Sep 6;10:982199. doi: 10.3389/fcell.2022.982199. eCollection 2022.
7
Blood Vessel Resident Human Stem Cells in Health and Disease.
Stem Cells Transl Med. 2022 Mar 3;11(1):35-43. doi: 10.1093/stcltm/szab001.
9
Research progress on tissue engineering in repairing tempomandibular joint.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Apr 25;50(2):212-221. doi: 10.3724/zdxbyxb-2021-0118.
10
Bone defect reconstruction via endochondral ossification: A developmental engineering strategy.
J Tissue Eng. 2021 Mar 30;12:20417314211004211. doi: 10.1177/20417314211004211. eCollection 2021 Jan-Dec.

本文引用的文献

2
Human perivascular stem cell-based bone graft substitute induces rat spinal fusion.
Stem Cells Transl Med. 2015 May;4(5):538. doi: 10.5966/sctm.2014-0027erratum.
5
Mesenchymal Stem Cells for Treating Articular Cartilage Defects and Osteoarthritis.
Cell Transplant. 2015;24(9):1661-78. doi: 10.3727/096368914X683485. Epub 2014 Jul 25.
6
Human perivascular stem cell-based bone graft substitute induces rat spinal fusion.
Stem Cells Transl Med. 2014 Oct;3(10):1231-41. doi: 10.5966/sctm.2014-0027. Epub 2014 Aug 25.
8
Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis.
Mol Cell Biochem. 2014 Jan;385(1-2):191-8. doi: 10.1007/s11010-013-1827-z. Epub 2013 Nov 7.
9
The effect of non-growth factors on chondrogenic differentiation of mesenchymal stem cells.
Cell Tissue Bank. 2014 Sep;15(3):319-27. doi: 10.1007/s10561-013-9403-z. Epub 2013 Oct 23.
10
TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds.
Biomaterials. 2014 Jan;35(1):123-32. doi: 10.1016/j.biomaterials.2013.09.086. Epub 2013 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验