Suppr超能文献

p53与MDM2的识别动力学:对肽设计的启示

Recognition Dynamics of p53 and MDM2: Implications for Peptide Design.

作者信息

ElSawy Karim M, Lane David P, Verma Chandra S, Caves Leo S D

机构信息

York Centre for Complex Systems Analysis (YCCSA), University of York , York, YO10 5GE, United Kingdom.

Department of Chemistry, College of Science, Qassim University , Buraydah 52571, Saudi Arabia.

出版信息

J Phys Chem B. 2016 Jan 21;120(2):320-8. doi: 10.1021/acs.jpcb.5b11162. Epub 2016 Jan 11.

Abstract

Peptides that inhibit MDM2 and attenuate MDM2-p53 interactions, thus activating p53, are currently being pursued as anticancer drug leads for tumors harboring wild type p53. The thermodynamic determinants of peptide-MDM2 interactions have been extensively studied. However, a detailed understanding of the dynamics that underlie these interactions is largely missing. In this study, we explore the kinetics of the binding of a set of peptides using Brownian dynamics simulations. We systematically investigate the effect of peptide C-terminal substitutions (Ser, Ala, Asn, Pro) of a Q16ETFSDLWKLLP27 p53-based peptide and a M1PRFMDYWEGLN12 12/1 phage-derived peptide on their interaction dynamics with MDM2. The substitutions modulate peptide residence times around the MDM2 protein. In particular, the highest affinity peptide, Q16ETFSDLWKLLS27, has the longest residence time (t ∼ 25 μs) around MDM2, suggesting its potentially important contribution to binding affinity. The binding of the p53-based peptides appears to be kinetically driven while that of the phage-derived series appears to be thermodynamically driven. The phage-derived peptides were found to adopt distinctly different modes of interaction with the MDM2 protein compared to their p53-based counterparts. The p53-based peptides approach the N-terminal region of the MDM2 protein with the peptide C-terminal end oriented toward the protein, while the M1PRFMDYWEGLN12-based peptides adopt the reverse orientation. To probe the determinants of this switch in orientation, a designed mutant of the phage-derived peptide, R3E (M1PEFMDYWEGLN12), was simulated and found to adopt the orientation adopted by the p53-based peptides and also to result in almost a 5-fold increase in the peptide residence time (∼120 μs) relative to the p53-based peptides. On this basis, we suggest that the R3E mutant phage-derived peptide has a higher affinity for MDM2 than the p53-based peptides and would therefore, competitively inhibit MDM2-p53. The study, therefore, provides a novel computational framework for kinetics-based lead optimization for anticancer drug development strategies.

摘要

抑制MDM2并减弱MDM2与p53的相互作用从而激活p53的肽,目前正被作为野生型p53肿瘤的抗癌药物先导物进行研究。肽与MDM2相互作用的热力学决定因素已得到广泛研究。然而,对于这些相互作用背后的动力学的详细理解在很大程度上还缺失。在本研究中,我们使用布朗动力学模拟来探索一组肽的结合动力学。我们系统地研究了基于Q16ETFSDLWKLLP27 p53的肽和M1PRFMDYWEGLN12 12/1噬菌体衍生肽的肽C末端取代(Ser、Ala、Asn、Pro)对它们与MDM2相互作用动力学的影响。这些取代调节了肽在MDM2蛋白周围的停留时间。特别是,亲和力最高的肽Q16ETFSDLWKLLS27在MDM2周围具有最长的停留时间(t ∼ 25 μs),表明其对结合亲和力有潜在的重要贡献。基于p53的肽的结合似乎是动力学驱动的,而噬菌体衍生系列的结合似乎是热力学驱动的。发现噬菌体衍生肽与基于p53的肽相比,与MDM2蛋白采用明显不同的相互作用模式。基于p53的肽以肽C末端朝向蛋白的方式接近MDM2蛋白的N末端区域,而基于M1PRFMDYWEGLN12的肽采用相反的方向。为了探究这种方向转变的决定因素,对噬菌体衍生肽的一个设计突变体R3E(M1PEFMDYWEGLN12)进行了模拟,发现它采用了基于p53的肽所采用的方向,并且相对于基于p53的肽,肽的停留时间增加了近5倍(∼120 μs)。在此基础上,我们认为R3E突变体噬菌体衍生肽对MDM2的亲和力高于基于p53的肽,因此会竞争性抑制MDM2 - p53。因此,该研究为基于动力学的抗癌药物开发策略的先导物优化提供了一个新的计算框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验