Suppr超能文献

室间隔心动过速的电位标测。一种新型术中标测技术的评估。

Potential mapping in septal tachycardia. Evaluation of a new intraoperative mapping technique.

作者信息

Tweddell J S, Branham B H, Harada A, Stone C M, Rokkas C K, Schuessler R B, Boineau J P, Cox J L

机构信息

Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110.

出版信息

Circulation. 1989 Sep;80(3 Pt 1):I97-108.

PMID:2670332
Abstract

A recently developed computer program is capable of rapidly (less than 5 minutes) constructing a series of potential-distribution maps (PDMs) for every msec of a 4-second window of ventricular tachycardia (VT). This study was performed to assess the ability of a series of PDMs to localize the site of earliest activation of VT originating in the interventricular septum. In 12 dogs, 13 morphologies of VT were initiated with programmed electrical stimulation 3-6 days after anterior septal coronary artery infarction. VT was mapped with endocardial and epicardial unipolar electrodes with a multipoint, computer-assisted mapping system. PDMs were compared with activation-time maps, and the former correctly identified the site of earliest activation of all 13 VT morphologies. When PDMs were viewed in sequence on a computer monitor, the site of earliest activation was signaled by abrupt development of a negative potential of less than -3.0 mV. The initial negative point subsequently expanded, and the spread of this negative-potential field correlated with activation sequence. PDMs provide an accurate, unambiguous, rapid means of analyzing large numbers of electrograms acquired with multipoint, computer-assisted mapping systems.

摘要

最近开发的一个计算机程序能够在短短5分钟内,针对4秒时长的室性心动过速(VT)窗口中的每一毫秒,快速构建一系列电位分布图(PDM)。本研究旨在评估一系列PDM定位起源于室间隔的VT最早激动部位的能力。在12只犬中,在前间隔冠状动脉梗死3 - 6天后,通过程控电刺激诱发了13种形态的VT。使用多点计算机辅助标测系统,通过心内膜和心外膜单极电极对VT进行标测。将PDM与激动时间图进行比较,结果显示前者正确识别了所有13种VT形态的最早激动部位。当在计算机显示器上按顺序查看PDM时,最早激动部位由突然出现的小于 - 3.0 mV的负电位信号指示。最初的负点随后扩大,这个负电位场的扩散与激动顺序相关。PDM提供了一种准确、明确、快速的方法,用于分析通过多点计算机辅助标测系统获取的大量心电信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验