Suppr超能文献

多模态混合推理方法在个性化健康服务中的应用。

Multimodal hybrid reasoning methodology for personalized wellbeing services.

机构信息

Department of Computer Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si 446-701, Gyeonggi-do, Republic of Korea.

Department of Computing and Information Systems, University of Tasmania, Hobart, Tasmania 7005, Australia.

出版信息

Comput Biol Med. 2016 Feb 1;69:10-28. doi: 10.1016/j.compbiomed.2015.11.013. Epub 2015 Dec 2.

Abstract

A wellness system provides wellbeing recommendations to support experts in promoting a healthier lifestyle and inducing individuals to adopt healthy habits. Adopting physical activity effectively promotes a healthier lifestyle. A physical activity recommendation system assists users to adopt daily routines to form a best practice of life by involving themselves in healthy physical activities. Traditional physical activity recommendation systems focus on general recommendations applicable to a community of users rather than specific individuals. These recommendations are general in nature and are fit for the community at a certain level, but they are not relevant to every individual based on specific requirements and personal interests. To cover this aspect, we propose a multimodal hybrid reasoning methodology (HRM) that generates personalized physical activity recommendations according to the user׳s specific needs and personal interests. The methodology integrates the rule-based reasoning (RBR), case-based reasoning (CBR), and preference-based reasoning (PBR) approaches in a linear combination that enables personalization of recommendations. RBR uses explicit knowledge rules from physical activity guidelines, CBR uses implicit knowledge from experts׳ past experiences, and PBR uses users׳ personal interests and preferences. To validate the methodology, a weight management scenario is considered and experimented with. The RBR part of the methodology generates goal, weight status, and plan recommendations, the CBR part suggests the top three relevant physical activities for executing the recommended plan, and the PBR part filters out irrelevant recommendations from the suggested ones using the user׳s personal preferences and interests. To evaluate the methodology, a baseline-RBR system is developed, which is improved first using ranged rules and ultimately using a hybrid-CBR. A comparison of the results of these systems shows that hybrid-CBR outperforms the modified-RBR and baseline-RBR systems. Hybrid-CBR yields a 0.94% recall, a 0.97% precision, a 0.95% f-score, and low Type I and Type II errors.

摘要

健康系统提供健康建议,以支持专家促进更健康的生活方式,并促使个人采纳健康习惯。采用体育活动可以有效地促进更健康的生活方式。体育活动推荐系统通过让用户参与健康的体育活动,帮助他们采用日常习惯,形成最佳生活实践。传统的体育活动推荐系统侧重于适用于用户群体的一般建议,而不是特定的个人。这些建议在性质上是一般性的,适用于一定水平的社区,但根据特定需求和个人兴趣,并不适用于每个个体。为了涵盖这一方面,我们提出了一种多模态混合推理方法 (HRM),根据用户的特定需求和个人兴趣生成个性化的体育活动建议。该方法将基于规则的推理 (RBR)、基于案例的推理 (CBR) 和基于偏好的推理 (PBR) 方法集成到一个线性组合中,实现推荐的个性化。RBR 使用来自体育活动指南的显式知识规则,CBR 使用专家过去经验的隐式知识,PBR 使用用户的个人兴趣和偏好。为了验证该方法,考虑并实验了一个体重管理场景。该方法的 RBR 部分生成目标、体重状况和计划建议,CBR 部分为执行推荐计划建议前三个最相关的体育活动,PBR 部分使用用户的个人偏好和兴趣从建议中筛选出不相关的建议。为了评估该方法,开发了一个基线-RBR 系统,首先使用范围规则改进该系统,最终使用混合-CBR 改进。这些系统的结果比较表明,混合-CBR 优于修改后的-RBR 和基线-RBR 系统。混合-CBR 的召回率为 0.94%,精度为 0.97%,F1 得分为 0.95%,且误报率和漏报率较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验