Suppr超能文献

基于案例推理的医学知识库系统

Cased-Based Reasoning for medical knowledge-based systems.

作者信息

Schmidt R, Montani S, Bellazzi R, Portinale L, Gierl L

机构信息

Institute for Medical Informatics and Biometry, University of Rostock, Rembrandtstrasse 16/17, 18055 Rostock, Germany.

出版信息

Int J Med Inform. 2001 Dec;64(2-3):355-67. doi: 10.1016/s1386-5056(01)00221-0.

Abstract

In this paper we present the results of the MIE/GMDS-2000 Workshop 'Case-Based Reasoning for Medical Knowledge-based Systems'. While in many domains Cased-Based Reasoning (CBR) has become a successful technique for knowledge-based systems, in the medical field attempts to apply the complete CBR cycle are rather exceptional. Some systems have recently been developed, which on the one hand use only parts of the CBR method, mainly the retrieval, and on the other hand enrich the method by a generalisation step to fill the knowledge gap between the specificity of single cases and general rules. And some systems rely on integrating CBR and other problem solving methodologies. In this paper we discuss the appropriateness of CBR for medical knowledge-based systems, point out problems, limitations and possible ways to cope with them.

摘要

在本文中,我们展示了MIE/GMDS - 2000研讨会“基于案例推理的医学知识系统”的成果。虽然在许多领域,基于案例推理(CBR)已成为基于知识系统的一种成功技术,但在医学领域,尝试应用完整的CBR循环却相当罕见。最近开发了一些系统,这些系统一方面仅使用CBR方法的部分内容,主要是检索部分,另一方面通过一个泛化步骤来丰富该方法,以填补单个案例的特异性与一般规则之间的知识空白。还有一些系统依赖于将CBR与其他问题解决方法相结合。在本文中,我们讨论了CBR对于医学知识系统的适用性,指出问题、局限性以及应对这些问题的可能方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验