Johnston Therese E, Marino Ralph J, Oleson Christina V, Schmidt-Read Mary, Leiby Benjamin E, Sendecki Jocelyn, Singh Harshvardhan, Modlesky Christopher M
Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA.
Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA.
Arch Phys Med Rehabil. 2016 Sep;97(9):1413-1422. doi: 10.1016/j.apmr.2015.11.014. Epub 2015 Dec 17.
To compare the musculoskeletal effects of low cadence cycling with functional electrical stimulation (FES) with high cadence FES cycling for people with spinal cord injury (SCI).
Randomized pre-post design.
Outpatient rehabilitation clinic.
Participants (N=17; 14 men, 3 women; age range, 22-67y) with C4-T6 motor complete chronic SCI were randomized to low cadence cycling (n=9) or high cadence cycling (n=8).
Low cadence cycling at 20 revolutions per minute (RPM) and high cadence cycling at 50 RPM 3 times per week for 6 months. Cycling torque (resistance per pedal rotation) increased if targeted cycling cadence was maintained.
Dual-energy x-ray absorptiometry was used to assess distal femur areal bone mineral density, magnetic resonance imaging was used to assess to assess trabecular bone microarchitecture and cortical bone macroarchitecture and thigh muscle volume, and biochemical markers were used to assess bone turnover. It was hypothesized that subjects using low cadence cycling would cycle with greater torque and therefore show greater musculoskeletal improvements than subjects using high cadence cycling.
A total of 15 participants completed the study. Low cadence cycling obtained a maximal average torque of 2.9±2.8Nm, and high cadence cycling obtained a maximal average torque of 0.8±0.2Nm. Low cadence cycling showed greater decreases in bone-specific alkaline phosphatase, indicating less bone formation (15.5% decrease for low cadence cycling, 10.7% increase for high cadence cycling). N-telopeptide decreased 34% following low cadence cycling, indicating decreased resorption. Both groups increased muscle volume (low cadence cycling by 19%, high cadence cycling by 10%). Low cadence cycling resulted in a nonsignificant 7% increase in apparent trabecular number (P=.08) and 6% decrease in apparent trabecular separation (P=.08) in the distal femur, whereas high cadence cycling resulted in a nonsignificant (P>.3) 2% decrease and 3% increase, respectively.
This study suggests that the greater torque achieved with low cadence cycling may result in improved bone health because of decreased bone turnover and improved trabecular bone microarchitecture. Longer-term outcome studies are warranted to identify the effect on fracture risk.
比较低踏频骑行结合功能性电刺激(FES)与高踏频FES骑行对脊髓损伤(SCI)患者肌肉骨骼的影响。
随机前后对照设计。
门诊康复诊所。
17名C4 - T6运动完全性慢性SCI患者(14名男性,3名女性;年龄范围22 - 67岁)被随机分为低踏频骑行组(n = 9)和高踏频骑行组(n = 8)。
低踏频骑行,每分钟20转(RPM),高踏频骑行,每分钟50转,每周3次,共6个月。如果保持目标骑行踏频,骑行扭矩(每踏板旋转的阻力)会增加。
采用双能X线吸收法评估股骨远端骨密度,磁共振成像评估小梁骨微结构和皮质骨宏观结构以及大腿肌肉体积,生化指标评估骨转换。假设使用低踏频骑行的受试者骑行时扭矩更大,因此与使用高踏频骑行的受试者相比,肌肉骨骼改善更大。
共有15名参与者完成了研究。低踏频骑行的最大平均扭矩为2.9±2.8牛米,高踏频骑行的最大平均扭矩为0.8±0.2牛米。低踏频骑行时骨特异性碱性磷酸酶下降幅度更大,表明骨形成减少(低踏频骑行下降15.5%,高踏频骑行增加10.7%)。低踏频骑行后N - 端肽下降34%,表明骨吸收减少。两组肌肉体积均增加(低踏频骑行增加19%,高踏频骑行增加10%)。低踏频骑行使股骨远端小梁骨数量明显增加7%(P = 0.08),小梁骨间距明显减少6%(P = 0.08),而高踏频骑行分别导致不显著的(P>0.3)2%减少和3%增加。
本研究表明,低踏频骑行产生的更大扭矩可能由于骨转换减少和小梁骨微结构改善而使骨骼健康得到改善。有必要进行长期结局研究以确定对骨折风险的影响。