Mirjankar Nikhil S, Fraga Carlos G, Carman April J, Moran James J
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States.
Anal Chem. 2016 Feb 2;88(3):1827-34. doi: 10.1021/acs.analchem.5b04126. Epub 2016 Jan 8.
Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock or stock group for a subset of United States stocks resulted in cross-validation errors ranging from 0 to 5.3%.
正在研究用于化学威胁剂(CTA)(如氰化物)的化学归因特征(CAS),以在CTA与特定来源之间建立证据联系,为刑事调查和起诉提供支持。在此,通过高效离子色谱法(HPIC)分析了KCN和NaCN库存中的痕量阴离子,通过同位素比质谱法(IRMS)分析了碳稳定同位素比(δ(13)C),并通过电感耦合等离子体发射光谱法(ICP-OES)分析了微量元素。使用层次聚类分析(HCA)、费舍尔比率(F比率)、区间偏最小二乘法(iPLS)、基于遗传算法的偏最小二乘法(GAPLS)、偏最小二乘判别分析(PLSDA)、K近邻法(KNN)和支持向量机判别分析(SVMDA)对收集到的分析数据进行评估。对来自六个报告原产国的多个氰化物库存的阴离子杂质谱进行HCA分析,结果表明氰化物样品聚为三组,与相关碱金属(K或Na)无关。通过对氰化物元素谱进行HCA分析,这三组得到了独立验证,分别对应于每个国家有一家已知固体氰化物工厂的情况:捷克共和国、德国和美国。碳稳定同位素测量结果形成两个聚类:德国和美国(单个捷克库存与美国库存归为一组)。在两项验证研究中,使用在不同仪器上收集的五年间的阴离子杂质谱,KNN和SVMDA的分类错误率低至零,这表明使用阴离子杂质将氰化物样品与其工厂进行匹配具有极高可靠性,前提是基于我们当前的氰化物库存。变量选择方法降低了那些错误率大于零的分类方法的误差;iPLS向前选择和F比率通常提供最低误差。最后,使用阴离子谱将美国库存子集中特定库存或库存组的氰化物进行分类,交叉验证误差范围为0至5.3%。