Suppr超能文献

采用液相色谱-质谱联用、XCMS 和化学计量学方法对神经毒剂前体进行样品匹配的特征发现方法。

Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics.

机构信息

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA.

出版信息

Anal Chem. 2010 May 15;82(10):4165-73. doi: 10.1021/ac1003568.

Abstract

This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography-mass spectrometry (LC-MS) data for the discovery of trace forensic signatures for sample matching of ten stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). XCMS, a software tool primarily used in bioinformatics, was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source. Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by K-nearest neighbors. Using this approach, a test set of seven dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities quantitatively estimated to be in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to assist investigations following chemical attacks.

摘要

本报告展示了如何在液相色谱-质谱(LC-MS)数据中使用生物信息学和化学计量学工具,以发现痕量法医特征,用于十种神经毒剂前体甲基膦酸二氯(二氯)的样本匹配。XCMS 是一种主要用于生物信息学的软件工具,用于全面搜索和发现已知二氯样品集中的候选 LC-MS 峰。这些候选峰被进一步筛选为一组 34 个杂质峰。层次聚类分析和因子分析表明,这些 34 个杂质峰具有根据其来源匹配样本的潜力。只有一对二氯库存彼此无法区分。确定的可接受的样本匹配化学计量学方法是在通过 K-最近邻分类之前,对归一化重复杂质谱进行方差缩放和平滑处理。使用这种方法,对七组二氯样品的测试集都正确地匹配到了它们的来源库存。样品制备和 LC-MS 方法允许定量检测到估计为万亿分之几(w/w)的二氯杂质。在 14 年的时间里,由不同制造商合成的所有二氯库存中都检测到一种常见杂质,这是一个意外的发现。我们描述的特征发现方法应该有助于开发法医能力,以协助对化学袭击后的调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验