Zhao Dongyan, Ferguson Ann A, Jiang Ning
Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
Biochim Biophys Acta. 2016 Feb;1859(2):366-80. doi: 10.1016/j.bbagrm.2015.12.005. Epub 2015 Dec 17.
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
进化的最终源头是突变。作为植物基因组的最大组成部分,转座元件(TEs)产生了许多其他遗传机制无法模拟的突变类型。当转座元件插入基因组序列时,它们会影响附近基因以及与插入位点不连锁的基因的表达。转座元件可以复制、移动并重组正常基因或基因片段,有可能产生新基因或改变现有基因的结构。转座元件还会在一个称为转座元件驯化的过程中为细胞功能贡献其转座酶编码区域。尽管宿主会防御转座元件的活动,但一部分转座元件通过谨慎选择转座活性、靶位点、元件大小和内部序列而存活并繁盛起来。最后,转座元件已经建立了一些策略,通过增加沉默转座元件的成本来降低宿主防御系统的功效。本综述讨论了植物转座元件领域的最新进展,重点是转座元件与基因之间的相互作用。