Suppr超能文献

转座元件对多倍体植物基因组的影响。

Impact of transposable elements on polyploid plant genomes.

作者信息

Vicient Carlos M, Casacuberta Josep M

机构信息

Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.

出版信息

Ann Bot. 2017 Aug 1;120(2):195-207. doi: 10.1093/aob/mcx078.

Abstract

BACKGROUND

The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants.

SCOPE

This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization.

CONCLUSIONS

TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.

摘要

背景

关于植物全基因组序列的知识日益丰富,这凸显了转座元件(TEs)在植物进化中的关键作用,它是基因组大小急剧变化的驱动因素,也是大量新编码和调控序列的来源。因此,与多倍体化事件一起,TEs应被视为植物进化的主要参与者。

范围

本综述概述了TEs影响植物基因组进化的主要机制,以及多倍体化事件如何影响这些影响,反之亦然。这些包括对基因的直接影响,为它们提供新的编码或调控序列,对基因附近染色质的表观遗传状态的影响,以及通过对不同染色体区域施加各种进化限制而产生的更微妙的影响。这些影响在多倍体化事件后尤为重要。多倍体化通常会导致转座爆发,这可能是由于其表观遗传控制的放松,并且在短期内,这会由于TEs插入基因旁边或基因内部而增加基因突变率和基因调控的变化。在更长的时间内,TE爆发可能会由于元件间重组而导致基因组结构的全局变化,包括大基因组区域的丢失和染色体重排,这些变化会减少基因组大小和染色体数量,这是一个称为二倍体化过程的一部分。

结论

TEs在基因组和基因进化中起着至关重要的作用,特别是在多倍体化事件之后。多倍体化可以诱导TE活性,这可能解释了观察到的部分新表型。TEs也可能在多倍体化事件后的二倍体化中发挥作用。然而,TEs对二倍体化和分馏偏差的贡献程度仍不清楚。研究控制TE动态的多种因素以及古代和近期多倍体基因组的性质可能会揭示这些过程。

相似文献

1
Impact of transposable elements on polyploid plant genomes.
Ann Bot. 2017 Aug 1;120(2):195-207. doi: 10.1093/aob/mcx078.
2
Impact of transposable elements on the organization and function of allopolyploid genomes.
New Phytol. 2010 Apr;186(1):37-45. doi: 10.1111/j.1469-8137.2009.03096.x. Epub 2009 Dec 7.
3
Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations.
Mol Genet Genomics. 2005 Sep;274(2):119-30. doi: 10.1007/s00438-005-0012-9. Epub 2005 Oct 11.
4
Transposable elements: powerful contributors to angiosperm evolution and diversity.
Genome Biol Evol. 2013;5(10):1886-901. doi: 10.1093/gbe/evt141.
5
Impact of transposable elements on genome structure and evolution in bread wheat.
Genome Biol. 2018 Aug 17;19(1):103. doi: 10.1186/s13059-018-1479-0.
6
Polyploidy and genome evolution in plants.
Curr Opin Genet Dev. 2015 Dec;35:119-25. doi: 10.1016/j.gde.2015.11.003. Epub 2015 Dec 2.
7
What makes up plant genomes: The vanishing line between transposable elements and genes.
Biochim Biophys Acta. 2016 Feb;1859(2):366-80. doi: 10.1016/j.bbagrm.2015.12.005. Epub 2015 Dec 17.
10
Contribution of transposable elements in the plant's genome.
Gene. 2018 Jul 30;665:155-166. doi: 10.1016/j.gene.2018.04.050. Epub 2018 Apr 22.

引用本文的文献

1
Climate change and plant genomic plasticity.
Theor Appl Genet. 2025 Aug 27;138(9):231. doi: 10.1007/s00122-025-05010-x.
2
Physiologic, Genetic and Epigenetic Determinants of Water Deficit Tolerance in Fruit Trees.
Plants (Basel). 2025 Jun 10;14(12):1769. doi: 10.3390/plants14121769.
3
Comprehensive transposon-insertion profiling unravels the asexual breeding history of sweet orange cultivars.
Plant Commun. 2025 Aug 11;6(8):101409. doi: 10.1016/j.xplc.2025.101409. Epub 2025 Jun 6.
6
Transposable elements drive the subgenomic divergence of homoeologous genes to shape wheat domestication and improvement.
Plant Commun. 2025 Jun 9;6(6):101341. doi: 10.1016/j.xplc.2025.101341. Epub 2025 Apr 16.
7
Construction of a comprehensive library of repeated sequences for the annotation of Citrus genomes.
BMC Genom Data. 2025 Apr 18;26(1):30. doi: 10.1186/s12863-025-01321-6.

本文引用的文献

4
Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton.
Plant J. 2016 Dec;88(6):992-1005. doi: 10.1111/tpj.13309. Epub 2016 Nov 1.
6
Transposable element evolution in the allotetraploid Capsella bursa-pastoris.
Am J Bot. 2016 Jul;103(7):1197-202. doi: 10.3732/ajb.1600103. Epub 2016 Jul 20.
7
Plant adaptive radiation mediated by polyploid plasticity in transcriptomes.
Mol Ecol. 2017 Jan;26(1):193-207. doi: 10.1111/mec.13738. Epub 2016 Aug 26.
8
Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell.
Nat Plants. 2016 Mar 21;2:16030. doi: 10.1038/nplants.2016.30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验