Meng Hai-Lin, Xiong Zhi-Qiang, Song Shu-Jie, Wang Jianfeng, Wang Yong
Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
Bioengineering Research Center, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, China.
Biotechnol J. 2016 Mar;11(4):530-41. doi: 10.1002/biot.201500351. Epub 2016 Jan 27.
Rapid assessment and optimization of the incompatible metabolic modules remain a challenge. Here, we developed a systematic approach to characterize the module interactions and improve the problematic modules during the 6-deoxyerythronolide B (6dEB) biosynthesis in E. coli. Tremendous differences in the overall trends of flux changes of various metabolic modules were firstly uncovered based on in silico fluxome analysis and comparative transcriptome analysis. Potential targets for improving 6dEB biosynthesis were identified through analyzing these discrepancies. All 25 predicted targets at modules of PP pathway and nucleotide metabolism were firstly tested for improving the 6dEB production in E. coli via synthetic antisense RNAs. Down-regulation of 18 targets genes leads to more than 20% increase in 6dEB yield. Combinatorial repression of targets with greater than 60% increase in 6dEB titer, e.g., anti-guaB/anti-zwf led to a 296.2% increase in 6dEB production (210.4 mg/L in flask) compared to the control (53.1 mg/L). This is the highest yield yet reported for polyketide heterologous biosynthesis in E. coli. This study demonstrates a strategy to enhance the yield of heterologous products in the chassis cell and indicates the effectiveness of antisense RNA for use in metabolic engineering.
对不兼容的代谢模块进行快速评估和优化仍然是一项挑战。在此,我们开发了一种系统方法,用于在大肠杆菌中6-脱氧红霉内酯B(6dEB)生物合成过程中表征模块间相互作用并改进有问题的模块。基于计算机通量组分析和比较转录组分析,首次发现了各种代谢模块通量变化总体趋势上的巨大差异。通过分析这些差异,确定了改善6dEB生物合成的潜在靶点。首先通过合成反义RNA测试了磷酸戊糖途径(PP途径)和核苷酸代谢模块中的所有25个预测靶点,以提高大肠杆菌中6dEB的产量。下调18个靶点基因可使6dEB产量提高20%以上。对6dEB滴度提高超过60%的靶点进行组合抑制,例如抗guaB/抗zwf,与对照(53.1 mg/L)相比,可使6dEB产量提高296.2%(摇瓶中为210.4 mg/L)。这是迄今为止报道的大肠杆菌中聚酮化合物异源生物合成的最高产量。本研究展示了一种提高底盘细胞中异源产物产量的策略,并表明了反义RNA在代谢工程中的有效性。