Ghosh Sourav, Reuveni Iris, Barkai Edi, Lamprecht Raphael
Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
J Neurochem. 2016 Mar;136(6):1168-1176. doi: 10.1111/jnc.13505. Epub 2016 Jan 18.
Learning leads to changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic excitation. The mechanisms for maintaining such alterations needed for memory persistence remain to be clarified. Here, we report a novel molecular mechanism for maintaining learning-induced AMPAR-mediated enhancement of synaptic excitation. We show that training rats in a complex olfactory discrimination task, such that requires rule learning, leads to the enhancement of averaged amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) in piriform cortex pyramidal neurons for days after learning. Inhibiting calcium/calmodulin-dependent kinase II (CaMKII) using KN93 or tatCN21 days after learning, reduced the averaged mEPSC amplitude in neurons in piriform cortex of trained rats to the level where they are not significantly different from mEPSC of control animals. CaMKII inhibition leads to a decrease in single channel conductance and not to changes in the number of synaptic-activated channels. We conclude that the maintenance of learning-induced enhancement of AMPAR-mediated synaptic excitation requires the activity of calcium/calmodulin-dependent kinase II. We show that training rats in a complex olfactory discrimination task leads to the enhancement of averaged amplitude of AMPA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs) in piriform cortex pyramidal neurons for days after learning. Inhibiting calcium/calmodulin-dependent kinase II (CaMKII) using KN93 or tatCN21 days after learning, reduced the averaged mEPSC amplitude in neurons in piriform cortex of trained rats to the level where they are not significantly different from mEPSC of control animals. CaMKII inhibition leads to a decrease in AMPAR single channel conductance. We conclude that the maintenance of learning-induced enhancement of AMPAR-mediated synaptic excitation requires the activity of CaMKII.
学习会导致α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)介导的突触兴奋发生变化。记忆持续所需的维持此类改变的机制仍有待阐明。在此,我们报告了一种维持学习诱导的AMPAR介导的突触兴奋增强的新分子机制。我们发现,训练大鼠完成一项复杂的嗅觉辨别任务(该任务需要规则学习),会导致在学习后的数天内,梨状皮层锥体神经元中AMPAR介导的微小兴奋性突触后电流(mEPSCs)的平均幅度增强。在学习后21天使用KN93或tatCN抑制钙/钙调蛋白依赖性激酶II(CaMKII),可将训练大鼠梨状皮层神经元中的平均mEPSC幅度降低至与对照动物的mEPSC无显著差异的水平。CaMKII抑制导致单通道电导降低,而不是突触激活通道数量的改变。我们得出结论,学习诱导的AMPAR介导的突触兴奋增强的维持需要钙/钙调蛋白依赖性激酶II的活性。我们发现,训练大鼠完成一项复杂的嗅觉辨别任务,会导致在学习后的数天内,梨状皮层锥体神经元中AMPA受体介导的微小兴奋性突触后电流(mEPSCs)的平均幅度增强。在学习后21天使用KN93或tatCN抑制钙/钙调蛋白依赖性激酶II(CaMKII),可将训练大鼠梨状皮层神经元中的平均mEPSC幅度降低至与对照动物的mEPSC无显著差异的水平。CaMKII抑制导致AMPAR单通道电导降低。我们得出结论,学习诱导的AMPAR介导的突触兴奋增强的维持需要CaMKII的活性。