Reuveni Iris, Ghosh Sourav, Barkai Edi
Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
PLoS Comput Biol. 2017 Jan 19;13(1):e1005306. doi: 10.1371/journal.pcbi.1005306. eCollection 2017 Jan.
Intense spiking response of a memory-pattern is believed to play a crucial role both in normal learning and pathology, where it can create biased behavior. We recently proposed a novel model for memory amplification where the simultaneous two-fold increase of all excitatory (AMPAR-mediated) and inhibitory (GABAAR-mediated) synapses in a sub-group of cells that constitutes a memory-pattern selectively amplifies this memory. Here we confirm the cellular basis of this model by validating its major predictions in four sets of experiments, and demonstrate its induction via a whole-cell transduction mechanism. Subsequently, using theory and simulations, we show that this whole-cell two-fold increase of all inhibitory and excitatory synapses functions as an instantaneous and multiplicative amplifier of the neurons' spiking. The amplification mechanism acts through multiplication of the net synaptic current, where it scales both the average and the standard deviation of the current. In the excitation-inhibition balance regime, this scaling creates a linear multiplicative amplifier of the cell's spiking response. Moreover, the direct scaling of the synaptic input enables the amplification of the spiking response to be synchronized with rapid changes in synaptic input, and to be independent of previous spiking activity. These traits enable instantaneous real-time amplification during brief elevations of excitatory synaptic input. Furthermore, the multiplicative nature of the amplifier ensures that the net effect of the amplification is large mainly when the synaptic input is mostly excitatory. When induced on all cells that comprise a memory-pattern, these whole-cell modifications enable a substantial instantaneous amplification of the memory-pattern when the memory is activated. The amplification mechanism is induced by CaMKII dependent phosphorylation that doubles the conductance of all GABAA and AMPA receptors in a subset of neurons. This whole-cell transduction mechanism enables both long-term induction of memory amplification when necessary and extinction when not further required.
记忆模式的强烈尖峰响应被认为在正常学习和病理学中都起着关键作用,在病理学中它会导致行为偏差。我们最近提出了一种记忆放大的新模型,在构成记忆模式的一组细胞中,所有兴奋性(AMPA受体介导)和抑制性(GABAA受体介导)突触同时两倍增加,可选择性地放大该记忆。在这里,我们通过在四组实验中验证其主要预测结果,证实了该模型的细胞基础,并通过全细胞转导机制证明了其诱导过程。随后,通过理论和模拟,我们表明所有抑制性和兴奋性突触的这种全细胞两倍增加起到了神经元尖峰的瞬时乘法放大器的作用。放大机制通过净突触电流的乘法起作用,它对电流的平均值和标准差进行缩放。在兴奋-抑制平衡状态下,这种缩放产生了细胞尖峰响应线性乘法放大器。此外,突触输入的直接缩放使尖峰响应的放大能够与突触输入的快速变化同步,并且独立于先前的尖峰活动。这些特性使得在兴奋性突触输入短暂升高期间能够进行瞬时实时放大。此外,放大器的乘法性质确保了放大的净效应主要在突触输入大多为兴奋性时才大。当在构成记忆模式的所有细胞上诱导时,这些全细胞修饰能够在记忆被激活时对记忆模式进行大幅瞬时放大。放大机制由CaMKII依赖性磷酸化诱导,该磷酸化使一部分神经元中所有GABAA和AMPA受体的电导加倍。这种全细胞转导机制既能够在必要时长期诱导记忆放大,也能在不再需要时使其消退。