Daghino Stefania, Martino Elena, Perotto Silvia
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
Mycorrhiza. 2016 May;26(4):263-74. doi: 10.1007/s00572-015-0675-y. Epub 2015 Dec 28.
Ericoid mycorrhizal plants dominate in harsh environments where nutrient-poor, acidic soil conditions result in a higher availability of potentially toxic metals. Although metal-tolerant plant species and ecotypes are known in the Ericaceae, metal tolerance in these plants has been mainly attributed to their association with ericoid mycorrhizal fungi. The mechanisms underlying plant protection by the fungal symbiont are poorly understood, whereas some insights have been achieved regarding the molecular mechanisms of heavy metal tolerance in the fungal symbiont. This review will briefly introduce the general features of heavy metal tolerance in mycorrhizal fungi and will then focus on the use of "omics" approaches and heterologous expression in model organisms to reveal the molecular bases of fungal response to heavy metals. Functional complementation in Saccharomyces cerevisiae has allowed the identification of several ericoid mycorrhizal fungi genes (i.e., antioxidant enzymes, metal transporters, and DNA damage repair proteins) that may contribute to metal tolerance in a metal-tolerant ericoid Oidiodendron maius isolate. Although a powerful system, the use of the yeast complementation assay to study metal tolerance in mycorrhizal symbioses has limitations. Thus, O. maius has been developed as a model system to study heavy metal tolerance mechanisms in mycorrhizal fungi, thanks to its high metal tolerance, easy handling and in vitro mycorrhization, stable genetic transformation, genomics, transcriptomic and proteomic resources.
在营养贫瘠、酸性土壤条件导致潜在有毒金属有效性较高的恶劣环境中,石楠状菌根植物占主导地位。虽然在杜鹃花科中已知有耐金属的植物物种和生态型,但这些植物的耐金属性主要归因于它们与石楠状菌根真菌的共生关系。真菌共生体对植物的保护机制尚不清楚,而关于真菌共生体中重金属耐受性的分子机制已经有了一些见解。本综述将简要介绍菌根真菌中重金属耐受性的一般特征,然后重点介绍使用“组学”方法和在模式生物中的异源表达来揭示真菌对重金属反应的分子基础。在酿酒酵母中的功能互补已使人们鉴定出几个石楠状菌根真菌基因(即抗氧化酶、金属转运蛋白和DNA损伤修复蛋白),这些基因可能有助于耐金属的石楠状菌根真菌大隔孢伏革菌分离株的金属耐受性。虽然酵母互补试验是一个强大的系统,但用于研究菌根共生中的金属耐受性存在局限性。因此,由于大隔孢伏革菌具有高金属耐受性、易于操作和体外菌根化、稳定的遗传转化、基因组学、转录组学和蛋白质组学资源,它已被开发成为研究菌根真菌重金属耐受机制的模式系统。