Mobasheri Meysam, Attar Hossein, Rezayat Sorkhabadi Seyed Mehdi, Khamesipour Ali, Jaafari Mahmoud Reza
Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran.
Tofigh Daru Research and Engineering Company (TODACO), Tehran 1397116359, Iran.
Molecules. 2015 Dec 24;21(1):E6. doi: 10.3390/molecules21010006.
Amphotericin B (AmB) and Nystatin (Nys) are the drugs of choice for treatment of systemic and superficial mycotic infections, respectively, with their full clinical potential unrealized due to the lack of high therapeutic index formulations for their solubilized delivery. In the present study, using a coarse-grained (CG) molecular dynamics (MD) simulation approach, we investigated the interaction of AmB and Nys with Polysorbate 80 (P80) to gain insight into the behavior of these polyene antibiotics (PAs) in nanomicellar solution and derive potential implications for their formulation development. While the encapsulation process was predominantly governed by hydrophobic forces, the dynamics, hydration, localization, orientation, and solvation of PAs in the micelle were largely controlled by hydrophilic interactions. Simulation results rationalized the experimentally observed capability of P80 in solubilizing PAs by indicating (i) the dominant kinetics of drugs encapsulation over self-association; (ii) significantly lower hydration of the drugs at encapsulated state compared with aggregated state; (iii) monomeric solubilization of the drugs; (iv) contribution of drug-micelle interactions to the solubilization; (v) suppressed diffusivity of the encapsulated drugs; (vi) high loading capacity of the micelle; and (vii) the structural robustness of the micelle against drug loading. Supported from the experimental data, our simulations determined the preferred location of PAs to be the core-shell interface at the relatively shallow depth of 75% of micelle radius. Deeper penetration of PAs was impeded by the synergistic effects of (i) limited diffusion of water; and (ii) perpendicular orientation of these drug molecules with respect to the micelle radius. PAs were solvated almost exclusively in the aqueous poly-oxyethylene (POE) medium due to the distance-related lack of interaction with the core, explaining the documented insensitivity of Nys solubilization to drug-core compatibility in detergent micelles. Based on the obtained results, the dearth of water at interior sites of micelle and the large lateral occupation space of PAs lead to shallow insertion, broad radial distribution, and lack of core interactions of the amphiphilic drugs. Hence, controlled promotion of micelle permeability and optimization of chain crowding in palisade layer may help to achieve more efficient solubilization of the PAs.
两性霉素B(AmB)和制霉菌素(Nys)分别是治疗全身性和浅表性真菌感染的首选药物,但由于缺乏用于其增溶递送的高治疗指数制剂,它们的全部临床潜力尚未实现。在本研究中,我们使用粗粒度(CG)分子动力学(MD)模拟方法,研究了AmB和Nys与聚山梨酯80(P80)的相互作用,以深入了解这些多烯抗生素(PAs)在纳米胶束溶液中的行为,并推导其制剂开发的潜在意义。虽然包封过程主要受疏水力控制,但PAs在胶束中的动力学、水合作用、定位、取向和溶剂化在很大程度上受亲水相互作用控制。模拟结果通过表明(i)药物包封相对于自缔合的主导动力学;(ii)与聚集状态相比,包封状态下药物的水合作用显著降低;(iii)药物的单体增溶;(iv)药物-胶束相互作用对增溶的贡献;(v)包封药物扩散率的抑制;(vi)胶束的高负载能力;以及(vii)胶束对药物负载的结构稳健性,合理化了P80在增溶PAs方面的实验观察能力。在实验数据的支持下,我们的模拟确定PAs的优选位置是在胶束半径75%的相对较浅深度处的核-壳界面。(i)水的有限扩散和(ii)这些药物分子相对于胶束半径的垂直取向的协同效应阻碍了PAs的更深渗透。由于与核的距离相关的相互作用缺乏,PAs几乎完全在水性聚氧乙烯(POE)介质中溶剂化,这解释了制霉菌素增溶对洗涤剂胶束中药物-核相容性的记录不敏感性。基于获得的结果,胶束内部位点水的缺乏和PAs的大横向占据空间导致两亲性药物的浅插入、宽径向分布和缺乏核相互作用。因此,控制促进胶束渗透性和优化栅栏层中的链拥挤可能有助于实现PAs更有效的增溶。