Suppr超能文献

高梯度场下磁性纳米颗粒靶向支架表面的计算建模

Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field.

作者信息

Wang Shunqiang, Zhou Yihua, Tan Jifu, Xu Jiang, Yang Jie, Liu Yaling

机构信息

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, 18015.

School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, China.

出版信息

Comput Mech. 2014 Mar 1;53(3):403-412. doi: 10.1007/s00466-013-0968-y.

Abstract

A multi-physics model was developed to study the delivery of magnetic nanoparticles (MNPs) to the stent-implanted region under an external magnetic field. The model is firstly validated by experimental work in literature. Then, effects of external magnetic field strength, magnetic particle size, and flow velocity on MNPs' targeting and binding have been analyzed through a parametric study. Two new dimensionless numbers were introduced to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on MNPs motion. It was found that larger magnetic field strength, bigger MNP size, and slower flow velocity increase the capture efficiency of MNPs. The distribution of captured MNPs on the vessel along axial and azimuthal directions was also discussed. Results showed that the MNPs density decreased exponentially along axial direction after one-dose injection while it was uniform along azimuthal direction in the whole stented region (averaged over all sections). For the beginning section of the stented region, the density ratio distribution of captured MNPs along azimuthal direction is center-symmetrical, corresponding to the center-symmetrical distribution of magnetic force in that section. Two different generation mechanisms are revealed to form four main attraction regions. These results could serve as guidelines to design a better magnetic drug delivery system.

摘要

开发了一种多物理场模型,用于研究在外部磁场作用下磁性纳米颗粒(MNPs)向支架植入区域的输送。该模型首先通过文献中的实验工作进行了验证。然后,通过参数研究分析了外部磁场强度、磁性颗粒尺寸和流速对MNPs靶向和结合的影响。引入了两个新的无量纲数来表征布朗运动(BM)、磁力诱导的颗粒运动和对流血流对MNPs运动的相对影响。结果发现,较大的磁场强度、较大的MNP尺寸和较慢的流速会提高MNPs的捕获效率。还讨论了捕获的MNPs在血管上沿轴向和方位角方向的分布。结果表明,单次注射后,捕获的MNPs密度沿轴向呈指数下降,而在整个支架区域(所有截面平均)沿方位角方向是均匀的。在支架区域的起始段,捕获的MNPs沿方位角方向的密度比分布是中心对称的,对应于该段磁力的中心对称分布。揭示了两种不同的生成机制,形成了四个主要的吸引区域。这些结果可为设计更好的磁性药物输送系统提供指导。

相似文献

1
Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field.
Comput Mech. 2014 Mar 1;53(3):403-412. doi: 10.1007/s00466-013-0968-y.
2
Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
Cardiovasc Eng Technol. 2023 Oct;14(5):694-712. doi: 10.1007/s13239-023-00681-3. Epub 2023 Sep 18.
4
Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.
Comput Methods Programs Biomed. 2021 Nov;212:106477. doi: 10.1016/j.cmpb.2021.106477. Epub 2021 Oct 19.
5
Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8346-51. doi: 10.1073/pnas.0909506107. Epub 2010 Apr 19.
6
Nanocarrier Design for Dual-Targeted Therapy of In-Stent Restenosis.
Pharmaceutics. 2024 Jan 29;16(2):188. doi: 10.3390/pharmaceutics16020188.
7
Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter.
Int J Mol Sci. 2023 Jan 28;24(3):2534. doi: 10.3390/ijms24032534.
9
Cubic and Sphere Magnetic Nanoparticles for Magnetic Hyperthermia Therapy: Computational Results.
Nanomaterials (Basel). 2023 Aug 21;13(16):2383. doi: 10.3390/nano13162383.

引用本文的文献

1
Nanotherapeutic Strategies for Overcoming the Blood-Brain Barrier: Applications in Disease Modeling and Drug Delivery.
ACS Omega. 2025 Jul 24;10(30):32606-32625. doi: 10.1021/acsomega.5c02206. eCollection 2025 Aug 5.
2
Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
Cardiovasc Eng Technol. 2023 Oct;14(5):694-712. doi: 10.1007/s13239-023-00681-3. Epub 2023 Sep 18.
3
Magnetic particle targeting for diagnosis and therapy of lung cancers.
J Control Release. 2020 Dec 10;328:776-791. doi: 10.1016/j.jconrel.2020.09.017. Epub 2020 Sep 11.
4
Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine.
Proc Math Phys Eng Sci. 2018 Mar;474(2211):20170845. doi: 10.1098/rspa.2017.0845. Epub 2018 Mar 21.
5
Characterization of vascular permeability using a biomimetic microfluidic blood vessel model.
Biomicrofluidics. 2017 Mar 3;11(2):024102. doi: 10.1063/1.4977584. eCollection 2017 Mar.
7
Thermal therapy with magnetic nanoparticles for cell destruction.
Biomed Opt Express. 2016 Oct 17;7(11):4581-4594. doi: 10.1364/BOE.7.004581. eCollection 2016 Nov 1.
8
Pelvic floor dynamics during high-impact athletic activities: A computational modeling study.
Clin Biomech (Bristol). 2017 Jan;41:20-27. doi: 10.1016/j.clinbiomech.2016.11.003. Epub 2016 Nov 18.
9
Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
J Biomech. 2017 Jan 4;50:240-247. doi: 10.1016/j.jbiomech.2016.11.023. Epub 2016 Nov 10.

本文引用的文献

1
Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.
Comput Struct. 2013 Jun 1;122:128-134. doi: 10.1016/j.compstruc.2012.12.019.
2
The influence of size, shape and vessel geometry on nanoparticle distribution.
Microfluid Nanofluidics. 2013 Jan 1;14(1-2):77-87. doi: 10.1007/s10404-012-1024-5. Epub 2012 Jul 12.
5
The shape of things to come: importance of design in nanotechnology for drug delivery.
Ther Deliv. 2012 Feb;3(2):181-94. doi: 10.4155/tde.11.156.
6
Electrokinetic effects on detection time of nanowire biosensor.
Appl Phys Lett. 2012 Apr 9;100(15):153502-1535024. doi: 10.1063/1.3701721.
7
Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
Soft Matter. 2011 Dec 22;8:1934-1946. doi: 10.1039/C2SM06391C.
8
Magnetic nanoparticles for cancer diagnosis and therapy.
Pharm Res. 2012 May;29(5):1180-8. doi: 10.1007/s11095-012-0679-7. Epub 2012 Jan 25.
9
Design of magnetic nanoparticles-assisted drug delivery system.
Curr Pharm Des. 2011;17(22):2331-51. doi: 10.2174/138161211797052574.
10
Magnetic nanoparticles for targeted vascular delivery.
IUBMB Life. 2011 Aug;63(8):613-20. doi: 10.1002/iub.479. Epub 2011 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验