Suppr超能文献

用于对抗氮氧化物污染的纳米材料。

Nanomaterials to Combat NO(x) Pollution.

作者信息

Balbuena J, Cruz-Yusta M, Sánchez L

出版信息

J Nanosci Nanotechnol. 2015 Sep;15(9):6373-85. doi: 10.1166/jnn.2015.10871.

Abstract

The presence of NO9x) gases (NO+NO2) in the atmosphere is a major concern of society because of their associated adverse and harmful effects. In order to remove the NO(x) gases from the air, photocatalysis arises as an innovative and promising technique. Through the use of photochemical oxidation processes the NO and NO2 gases are oxidised to NO3- form and thus removed from the air. In recent years new nanomaterials are being developed by researchers with the aim to enhance their photocatalytic activity to combat the NO(x) pollution. The main focus is devoted to preparing new TiO2 based compounds with the highest specific surface area (SSA), different morphology and chemical modifications. In order to increase the SSA, different substrates were used to disperse the TiO2 nanoparticles: organic and carbon fibres, mesoporous materials, clays composites and nanoporous microparticles. In the other hand, high photocatalytic performances were obtained with nanotubes, self-orderer nano-tubular films and nanoparticles with the lowest size. Conversely, when TiO2 is doped with ions the oxide exhibited a better photocatalytic performance under visible light, which is related to the creation of intermediate energy states between the conduction band and the valence band. Alternatively, visible light photocatalysts different from titanium oxide have been studied, which exhibit a good De-NO(x) efficiency working under λ > 400 nm visible light irradiation.

摘要

大气中氮氧化物(NO+NO₂)的存在是社会主要关注的问题,因为它们会带来不利和有害影响。为了从空气中去除氮氧化物气体,光催化作为一种创新且有前景的技术应运而生。通过光化学氧化过程,NO和NO₂气体被氧化成NO₃⁻形式,从而从空气中去除。近年来,研究人员正在开发新型纳米材料,旨在提高其光催化活性以对抗氮氧化物污染。主要重点致力于制备具有最高比表面积(SSA)、不同形态和化学修饰的新型TiO₂基化合物。为了增加比表面积,使用了不同的基质来分散TiO₂纳米颗粒:有机纤维和碳纤维、介孔材料、粘土复合材料和纳米多孔微粒。另一方面,纳米管、自排列纳米管薄膜和尺寸最小的纳米颗粒具有高光催化性能。相反,当TiO₂掺杂离子时,该氧化物在可见光下表现出更好的光催化性能,这与在导带和价带之间产生中间能态有关。另外,已经研究了不同于二氧化钛的可见光光催化剂,它们在λ>400nm可见光照射下具有良好的脱硝效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验