Suppr超能文献

Vortex-assisted liquid-liquid extraction combined with field-amplified sample injection and sweeping micellar electrokinetic chromatography for improved determination of β-blockers in human urine.

作者信息

Jouyban Abolghasem, Sorouraddin Mohammad Hossein, Farajzadeh Mir Ali, Somi Mohammad Hossein, Fazeli-Bakhtiyari Rana

机构信息

Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.

Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.

出版信息

Talanta. 2016;149:298-309. doi: 10.1016/j.talanta.2015.11.046. Epub 2015 Nov 19.

Abstract

A new micellar electrokinetic chromatography (MEKC) method was developed and validated for the analysis of carvedilol and propranolol in human urine samples. In this study, vortex-assisted liquid-liquid extraction (VALLE) coupled with field-amplified sample injection and sweeping was employed for biological sample clean-up and sensitivity enhancement in MEKC. After VALLE, the urine samples were analyzed by MEKC. Tris-phosphate buffer (60mmolL(-1), pH 2.0) containing 40% (v/v) methanol was first filled into an uncoated fused-silica capillary (56cm, 50µm i.d.). The pretreated urine sample was loaded by electrokinetic injection (10kV, 250s). The stacking and separation were performed using Tris-phosphate buffer (30mmolL(-1), pH 3.0) containing 30% (v/v) methanol and 50mmolL(-1) sodium dodecyl sulfate (SDS) at -25kV. Detection was carried out at 195 and 214nm for carvedilol and propranolol, respectively. The suggested method is linear (r(2)≥0.997) over a dynamic range of 0.005-1µgmL(-1) in urine. The intra- and inter-day relative standard deviation and relative error values of the method were below 20%, which shows good precision and accuracy. Finally, this method was successfully applied to the analysis of real urine samples.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验