Suppr超能文献

通过系统地调整给体聚合物和受体聚合物的分子量来优化全聚合物太阳能电池的性能。

All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States.

Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077, United States.

出版信息

J Am Chem Soc. 2016 Feb 3;138(4):1240-51. doi: 10.1021/jacs.5b10735. Epub 2016 Jan 21.

Abstract

The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer components to realize the full potential of APSC performance.

摘要

系统研究了数均分子量(Mn)对以给体聚合物聚[5-(2-己基十二烷基)-1,3-噻吩[3,4-c]吡咯-4,6-二酮-alt-5,5-(2,5-双(3-十二烷基噻吩-2-基)噻吩)](PTPD3T)和受体聚合物聚{[N,N'-双(2-辛基十二烷基)萘-1,4,5,8-双(二羧酸二酰亚胺)-2,6-二基]-交替-5,5'-(2,2'-联噻吩)}(P(NDI2OD-T2);N2200)制备的全聚合物太阳能电池(APSCs)的共混膜形态和光伏性能的影响。通过实施一种聚合策略来实现 PTPD3T 和 N2200 的 Mn 效应分析,该策略可产生具有可调 Mn 的共轭聚合物。实验和粗粒度建模结果表明,系统的 Mn 变化极大地影响了链内和链间相互作用,最终影响了相分离程度和形态演化。具体而言,对于两种聚合物,增加 Mn 都会缩小共混膜的畴尺寸并增强施主-受主聚合物-聚合物界面面积,从而增加短路电流密度(Jsc)。然而,随着 Mn 的增加,更大的无序性和混合特征的增殖促进了载流子复合,降低了电池填充因子(FF)。优化后的光活性层表现出良好的激子解离和电荷输运特性,最终使太阳能电池的光电转换效率(PCE)相对于 Mn 非最优器件提高了 2 倍。总体而言,结果表明,适当精确地调节给体和受体聚合物的 Mn 对于优化 APSC 性能至关重要。与报道的最高 Mn 时获得最大功率转换效率(PCE)的情况相反,本二维 Mn 优化矩阵策略在施主和受体聚合物的中间 Mn 处找到了一个 PCE“最佳点”。本研究提供了可预测地获得所需 Mn 的共轭聚合物的合成方法,并强调了优化聚合物组件的 Mn 的重要性,以实现 APSC 性能的全部潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验